On minimum k-modal partitions of permutations

被引:7
|
作者
Di Stefano, Gabriele [1 ]
Krause, Stefan [2 ]
Luebbecke, Marco E. [3 ]
Zimmermann, Uwe T. [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn Elettr, Laquila, Italy
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mathemat Optimierung, D-38106 Braunschweig, Germany
[3] Tech Univ Berlin, Inst Mathemat, Sekr MA 5-1,Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Mixed integer program; Approximation algorithm; LP rounding; Online algorithm; NP-hardness; Monotone sequence; k-modal sequence; Coloring; Cocoloring;
D O I
10.1016/j.jda.2008.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partitioning a permutation into a minimum number of monotone subsequences is NP-hard. We extend this complexity result to minimum partitioning into k-modal subsequences; here unimodal is the special case k = 1. Based on a network flow interpretation we formulate both, the monotone and the k-modal version, as mixed integer programs. This is the first proposal to obtain provably optimal partitions of permutations. LP rounding gives a 2-approximation for minimum monotone partitions and a (k + 1)approximation for minimum (upper) k-modal partitions. For the online problem, in which the permutation becomes known to an algorithm sequentially, we derive a logarithmic lower bound on the competitive ratio for minimum monotone partitions, and we analyze two (bin packing) online algorithms. These immediately apply to online cocoloring of permutation graphs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 50 条
  • [41] Packing densities of layered permutations and the minimum number of monotone sequences in layered permutations
    Bastos, Josefran de Oliveira
    Coregliano, Leonardo Nagami
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2016, 18 (02):
  • [42] Minimum convex partitions of multidimensional polyhedrons
    Bat, Ion
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2007, 15 (03) : 288 - 302
  • [43] Minimum Weight Convex Steiner Partitions
    Adrian Dumitrescu
    Csaba D. Tóth
    Algorithmica, 2011, 60 : 627 - 652
  • [44] Minimum weight convex Steiner partitions
    Dumitrescu, Adrian
    Toth, Csaba D.
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 581 - +
  • [45] New explicit constructions of differentially 4-uniform permutations via special partitions of F22k
    Peng, Jie
    Tan, Chik How
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 : 73 - 89
  • [46] Binary Partitions with Approximate Minimum Impurity
    Laber, Eduardo S.
    Molinaro, Marco
    Pereira, Felipe de A. Mello
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [47] Graph partitions with minimum degree constraints
    Arkin, EM
    Hassin, R
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 55 - 65
  • [48] Minimum Weight Convex Steiner Partitions
    Dumitrescu, Adrian
    Toth, Csaba D.
    ALGORITHMICA, 2011, 60 (03) : 627 - 652
  • [49] On Rectilinear Partitions with Minimum Stabbing Number
    de Berg, Mark
    Khosravi, Amirali
    Verdonschot, Sander
    van der Weele, Vincent
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 302 - +
  • [50] ON HEURISTICS FOR MINIMUM LENGTH RECTILINEAR PARTITIONS
    DU, DZ
    ZHANG, YJ
    ALGORITHMICA, 1990, 5 (01) : 111 - 128