On minimum k-modal partitions of permutations

被引:7
|
作者
Di Stefano, Gabriele [1 ]
Krause, Stefan [2 ]
Luebbecke, Marco E. [3 ]
Zimmermann, Uwe T. [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn Elettr, Laquila, Italy
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mathemat Optimierung, D-38106 Braunschweig, Germany
[3] Tech Univ Berlin, Inst Mathemat, Sekr MA 5-1,Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Mixed integer program; Approximation algorithm; LP rounding; Online algorithm; NP-hardness; Monotone sequence; k-modal sequence; Coloring; Cocoloring;
D O I
10.1016/j.jda.2008.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partitioning a permutation into a minimum number of monotone subsequences is NP-hard. We extend this complexity result to minimum partitioning into k-modal subsequences; here unimodal is the special case k = 1. Based on a network flow interpretation we formulate both, the monotone and the k-modal version, as mixed integer programs. This is the first proposal to obtain provably optimal partitions of permutations. LP rounding gives a 2-approximation for minimum monotone partitions and a (k + 1)approximation for minimum (upper) k-modal partitions. For the online problem, in which the permutation becomes known to an algorithm sequentially, we derive a logarithmic lower bound on the competitive ratio for minimum monotone partitions, and we analyze two (bin packing) online algorithms. These immediately apply to online cocoloring of permutation graphs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 50 条
  • [1] On minimum k-modal partitions of permutations
    Di Stefano, G
    Krause, S
    Lübbecke, ME
    Zimmermann, UT
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 374 - 385
  • [2] K-modal BL-logic
    Haveshki, Masoud
    Mohamadhasani, Mahboobeh
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2023, 40 (3-4) : 401 - 414
  • [3] On K-modal BL-logics
    Eslami, Esfandiar
    Kia, Omid Yousefi
    Saeid, Arsham Borumand
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (01) : 377 - 388
  • [4] K-modal BL-algebras
    Kia, Omid Y.
    Eslami, Esfandiar
    Saeid, Arsham Borumand
    KUWAIT JOURNAL OF SCIENCE, 2016, 43 (01) : 39 - 60
  • [5] Computing k-Modal Embeddings of Planar Digraphs
    Besa, Juan Jose
    Da Lozzo, Giordano
    Goodrich, Michael T.
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [6] Unsupervised K-modal Styled Content Generation
    Sendik, Omry
    Lischinski, Dani
    Cohen-Or, Daniel
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [7] Learning k-modal distributions via testing
    Daskalakis, Constantinos
    Diakonikolas, Ilias
    Servedio, Rocco A.
    1600, University of Chicago, Department of Computer Science (10): : 535 - 570
  • [8] Testing k-Modal Distributions: Optimal Algorithms via Reductions
    Daskalakis, Constantinos
    Diakonikolas, Ilias
    Servedio, Rocco A.
    Valiant, Gregory
    Valiant, Paul
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1833 - 1852
  • [9] Generalized Kraft's inequality and discrete k-modal search
    Mathur, A
    Reingold, EM
    SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 420 - 447
  • [10] Partitions and permutations
    Cameron, PJ
    DISCRETE MATHEMATICS, 2005, 291 (1-3) : 45 - 54