共 10 条
- [4] On the number of solutions of the generalized Ramanujan-Nagell equation D1x2 + D2m = pn BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (03): : 279 - 293
- [5] On the generalized Ramanujan-Nagell equation x2 + qm = cn with qr+1=2c2 BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (03): : 257 - 265
- [6] On the generalized Ramanujan-Nagell equation x2+(3m2+1)=(4m2+1)n INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 222 - 227
- [7] A note on the solution to the generalized Ramanujan-Nagell equation x2 + (4c)y = (c+1)z INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1145 - 1157
- [10] On the generalized Ramanujan-Nagell equation x2+(3m2+1)=(4m2+1)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {x^2+(3m^2+1)=(4m^2+1)^n}$$\end{document} Indian Journal of Pure and Applied Mathematics, 2022, 53 (1) : 222 - 227