On the generalized Ramanujan-Nagell equation x2+(3m2+1)=(4m2+1)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {x^2+(3m^2+1)=(4m^2+1)^n}$$\end{document}

被引:0
|
作者
Ruiqin Fu
Hai Yang
机构
[1] Xi’an Shiyou University,School of Science
[2] Xi’an Polytechnic University,School of Science
关键词
exponential diophantine equation; generalized Ramanujan-Nagell equation; Pell equation; 11D61;
D O I
10.1007/s13226-021-00209-2
中图分类号
学科分类号
摘要
Let m be a positive integer. Using certain properties of Pell equations with elementary number theoretic methods, we prove that the equation x2+(3m2+1)=(4m2+1)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+(3m^2+1)=(4m^2+1)^n$$\end{document} has only two positive integer solutions (x,n)=(m,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,\ n)=(m,\ 1)$$\end{document} and (8m3+3m,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(8m^3+3m,\ 3)$$\end{document}.
引用
收藏
页码:222 / 227
页数:5
相关论文
共 50 条