ON PRIME DIVISORS OF BINOMIAL COEFFICIENTS

被引:6
|
作者
SANDER, JW
机构
[1] Institut für Mathematik Universitat Hannover, Hannover, 3000
关键词
D O I
10.1112/blms/24.2.140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1985, Sarkozy proved a conjecture of Erdos by showing that (2n(n)) is never square-free for sufficiently large n. By applying a new estimate on exponential sums, we prove that this also holds for (2n +/- d(n)), if d is not 'too big'. Let 0 < epsilon < 1, p0 is-an-element-of N. For m greater-than-or-equal-to m0 and 1 less-than-or-equal-to k less-than-or-equal-to m satisfying \m - 2k\ < m1-epsilon, there is a prime p > p0 such that p2\(m(k)).
引用
收藏
页码:140 / 142
页数:3
相关论文
共 50 条