Linearity, Persistence and Testing Semantics in the Asynchronous Pi-Calculus

被引:9
|
作者
Cacciagrano, Diletta [1 ]
Corradini, Flavio [1 ]
Aranda, Jesus [2 ,3 ]
Valencia, Frank D. [4 ,5 ]
机构
[1] Univ Camerino, Dipartimento Matemat & Informat, Camerino, Italy
[2] LIX Ecole Polytechn, INRIA Futurs, Paris, France
[3] Univ Valle, Escuela Ingn Sistemas & Comp, Cali, Colombia
[4] CNRS, Paris, France
[5] LIX Ecole Polytechn, Paris, France
关键词
Asynchronous Pi-Calculus; Linearity; Persistence; Testing Semantics;
D O I
10.1016/j.entcs.2007.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In [24] the authors studied the expressiveness of persistence in the asynchronous p-calculus (A pi) wrt weak barbed congruence. The study is incomplete because it ignores the issue of divergence. In this paper, we present an expressiveness study of persistence in the asynchronous pi-calculus (A pi) wrt De Nicola and Hennessy's testing scenario which is sensitive to divergence. Following [24], we consider A pi and three sub-languages of it, each capturing one source of persistence: the persistent-input calculus (PIA pi), the persistent-output calculus (POA pi) and persistent calculus (PA pi). In [24] the authors showed encodings from A pi into the semi-persistent calculi (i.e., POA pi and PIA pi) correct wrt weak barbed congruence. In this paper we prove that, under some general conditions, there cannot be an encoding from A pi into a (semi)-persistent calculus preserving the must testing semantics.
引用
收藏
页码:59 / 84
页数:26
相关论文
共 50 条
  • [31] A pi-calculus with explicit substitutions
    Ferrari, GL
    Montanari, U
    Quaglia, P
    THEORETICAL COMPUTER SCIENCE, 1996, 168 (01) : 53 - 103
  • [32] A theory of bisimulation for the pi-calculus
    Sangiorgi, D
    ACTA INFORMATICA, 1996, 33 (01) : 69 - 97
  • [33] SOME RESULTS ON THE PI-CALCULUS
    WALKER, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 491 : 21 - 35
  • [34] Hide and New in the pi-calculus
    Giunti, Marco
    Palamidessi, Catuscia
    Valencia, Frank D.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (89): : 65 - 79
  • [35] Pi-calculus in logical form
    Bonsangue, M. M.
    Kurz, A.
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 303 - +
  • [36] Semantic subtyping for the pi-calculus
    Castagna, Giuseppe
    De Nicola, Rocco
    Varacca, Daniele
    THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 217 - 242
  • [37] ON THE PI-CALCULUS AND LINEAR LOGIC
    BELLIN, G
    SCOTT, PJ
    THEORETICAL COMPUTER SCIENCE, 1994, 135 (01) : 11 - 65
  • [38] Termination in a pi-calculus with Subtyping
    Cristescu, Ioana
    Hirschkoff, Daniel
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (64): : 44 - 58
  • [39] The Attributed Pi-Calculus with Priorities
    John, Mathias
    Lhoussaine, Cedric
    Niehren, Joachim
    Uhrmacher, Adelinde M.
    TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY XII, 2010, 5945 : 13 - +
  • [40] Full abstraction for polymorphic Pi-calculus
    Jeffrey, A
    Rathke, J
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2005, 3441 : 266 - 281