SPHERICAL LIOUVILLES THEOREM AND CONCENTRATOR OPTICS

被引:0
|
作者
JANNSON, T [1 ]
WINSTON, R [1 ]
机构
[1] NATL TECH SYST WIGGINS GRP CO,LOS ANGELES,CA 90066
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1226 / 1226
页数:1
相关论文
共 50 条
  • [21] Optics of a two-trough solar concentrator
    Los Alamos National Laboratory, Los Alamos, NM 87545, United States
    SOL. ENERGY, 2 (191-198):
  • [22] Secondary concentrator design of an updated space solar power satellite with a spherical concentrator
    Fan, Guanheng
    Duan, Baoyan
    Zhang, Yiqun
    Yang, Yang
    Ji, Xiangfei
    Li, Xianli
    SOLAR ENERGY, 2021, 214 : 400 - 408
  • [24] COMPARISON BETWEEN LIOUVILLES THEOREM AND OBSERVED LATITUDINAL DISTRIBUTIONS OF TRAPPED IONS IN THE PLASMAPAUSE REGION
    OLSEN, RC
    SCOTT, LJ
    BOARDSEN, SA
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A2) : 2191 - 2203
  • [25] A concentrator module of spherical Si solar cell
    Liu, Zhengxin
    Masuda, Atsushi
    Nagai, Takehiko
    Miyazaki, Takashi
    Takano, Miwako
    Takano, Masahiro
    Yoshigahara, Haruyuki
    Sakai, Kazutoshi
    Asai, Koichi
    Kondo, Michio
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (19) : 1805 - 1810
  • [26] A Spherical Pythagorean Theorem
    Paolo Maraner
    The Mathematical Intelligencer, 2010, 32 : 46 - 50
  • [27] A Spherical Pythagorean Theorem
    Maraner, Paolo
    MATHEMATICAL INTELLIGENCER, 2010, 32 (03): : 46 - 50
  • [28] SECOND STAGE REFLECTIVE AND REFRACTIVE OPTICS FOR CONCENTRATOR PHOTOVOLTAICS
    Jaus, J.
    Nitz, P.
    Peharz, G.
    Siefer, G.
    Schult, T.
    Wolf, O.
    Passig, M.
    Gandy, T.
    Bett, A. W.
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 1570 - 1574
  • [29] A survey of methods for the evaluation of reflective solar concentrator optics
    Arancibia-Bulnes, Camilo A.
    Pena-Cruz, Manuel I.
    Mutuberria, Amaia
    Diaz-Uribe, Rufino
    Sanchez-Gonzalez, Marcelino
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 : 673 - 684
  • [30] Virial theorem and hypervirial theorem in a spherical geometry
    Li, Yan
    Zhang, Fu-Lin
    Chen, Jing-Ling
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (36)