REGULARITY CONDITIONS FOR CONSTRAINED EXTREMUM PROBLEMS

被引:8
|
作者
MARTEIN, L
机构
[1] Univ of Pisa, Dep of Mathematics,, Pisa, Italy, Univ of Pisa, Dep of Mathematics, Pisa, Italy
关键词
D O I
10.1007/BF00940770
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Necessary and/or sufficient conditions are stated in order to have regularity for nondifferentiable problems or differentiable problems. These conditions are compared with some known constraint qualifications.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 50 条
  • [31] Sufficient conditions for extremum of fractional variational problems
    Pattnaik, Ashapurna
    Padhan, Saroj Kumar
    Mohapatra, R. N.
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) : 637 - 648
  • [32] On the regularity of optimal controls for state constrained problems
    Shvartsman, IA
    Vinter, RB
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2285 - 2290
  • [33] A Unified Approach for Constrained Extremum Problems: Image Space Analysis
    Li, J.
    Feng, S. Q.
    Zhang, Z.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 69 - 92
  • [34] A Unified Approach for Constrained Extremum Problems: Image Space Analysis
    J. Li
    S. Q. Feng
    Z. Zhang
    Journal of Optimization Theory and Applications, 2013, 159 : 69 - 92
  • [35] A Smoothing Method for Zero-One Constrained Extremum Problems
    Tan, Tao
    Li, Yanyan
    Li, Xingsi
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (01) : 65 - 77
  • [36] Regularity of optimal controls for state constrained problems
    Galbraith, GN
    Vinter, RB
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (3-4) : 305 - 317
  • [37] Regularity of Optimal Controls for State Constrained Problems
    Grant N. Galbraith
    Richard B. Vinter
    Journal of Global Optimization, 2004, 28 : 305 - 317
  • [38] Stability theorem and extremum conditions for abnormal problems
    E. R. Avakov
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 4 - 23
  • [39] CONDITIONS OF LOCAL MINIMUM IN EXTREMUM PROBLEMS WITH CONSTRAINTS
    LEVITIN, ES
    DOKLADY AKADEMII NAUK SSSR, 1975, 221 (05): : 1031 - 1034
  • [40] Optimality conditions for degenerate extremum problems with equality constraints
    Brezhneva, OA
    Tret'yakov, AA
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 729 - 745