A Hybrid Applied Optimization Algorithm for Training Multi-Layer Neural Networks in Data Classification

被引:0
|
作者
Orkcu, H. Hasan [1 ]
Dogan, Mustafa Isa [1 ]
Orkcu, Mediha [2 ]
机构
[1] Gazi Univ, Fac Sci, Dept Stat, TR-06500 Ankara, Turkey
[2] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2015年 / 28卷 / 01期
关键词
Artificial neural networks; data classification; training of neural networks; genetic algorithm; simulated annealing;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Backpropagation algorithm is a classical technique used in the training of the artificial neural networks. Since this algorithm has many disadvantages, the training of the neural networks has been implemented with various optimization methods. In this paper, a hybrid intelligent model, i.e., hybridGSA (hybrid Genetic Algorithm and Simulated Annealing), is developed for training artificial neural networks (ANN) and undertaking data classification problems. The hybrid intelligent system aims to exploit the advantages of genetic and simulated annealing algorithms and, at the same time, alleviate their limitations. To evaluate the effectiveness of the hybridGSA method, three benchmark data sets, i.e., Breast Cancer Wisconsin, Pima Indians Diabetes, and Liver Disorders from the UCI Repository of Machine Learning, and a simulation experiment are used for evaluation. A comparative analysis on the real data sets and simulation data show that the hybridGSA algorithm may offer efficient alternative to traditional training methods for the classification problem.
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [31] The learning problem of multi-layer neural networks
    Ban, Jung-Chao
    Chang, Chih-Hung
    NEURAL NETWORKS, 2013, 46 : 116 - 123
  • [32] Diamond in multi-layer cellular neural networks
    Ban, Jung-Chao
    Chang, Chih-Hung
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 1 - 12
  • [33] On the structure of multi-layer cellular neural networks
    Ban, Jung-Chao
    Chang, Chih-Hung
    Lin, Song-Sun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (08) : 4563 - 4597
  • [34] An algorithm for multi-layer channel routing problem using chaotic neural networks
    Ohta, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL V: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 149 - 152
  • [35] Evolving Multi-Layer Neural Networks for Othello
    Makris, Vassilis
    Kalles, Dimitris
    9TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2016), 2016,
  • [36] MULTI-LAYER NEURAL NETWORKS FOR SALES FORECASTING
    Scherer, Magdalena
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2018, 17 (01) : 61 - 68
  • [37] Reinforcement of extrapolation of multi-layer neural networks
    Aoyama, T
    Wang, QY
    Nagashima, U
    Yoshihara, I
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2495 - 2500
  • [38] Optimizing Multi-Layer Perceptron using Variable Step Size Firefly Optimization Algorithm for Diabetes Data Classification
    Behera, Mandakini Priyadarshani
    Sarangi, Archana
    Mishra, Debahuti
    Sarangi, Shubhendu Kumar
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (04) : 124 - 139
  • [39] Fortified Cuckoo Search Algorithm on training multi-layer perceptron for solving classification problems
    Thirugnanasambandam K.
    Prabu U.
    Saravanan D.
    Anguraj D.K.
    Raghav R.S.
    Personal and Ubiquitous Computing, 2023, 27 (03) : 1039 - 1049
  • [40] Image classification algorithm based on deep neural network and multi-layer feature learning
    Huang, Yiying
    Wang, Junrong
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 32 - 33