机构:
IME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, BrazilIME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
Goncalves, Daciberg L.
[1
]
Hayat, Claude
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse III, Dept Math, Lab Emile Picard, UMR 5580, F-31062 Toulouse, FranceIME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
Hayat, Claude
[2
]
de Paula Leite Mello, Maria Herminia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio De Janeiro, Dept Anal Matemat, Rio De Janeiro, BrazilIME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
de Paula Leite Mello, Maria Herminia
[3
]
机构:
[1] IME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
[2] Univ Toulouse III, Dept Math, Lab Emile Picard, UMR 5580, F-31062 Toulouse, France
[3] Univ Estado Rio De Janeiro, Dept Anal Matemat, Rio De Janeiro, Brazil
Buldles;
principal bundles;
orientable bundles;
spin-structure;
fundamental group;
Stiefel-Whithney classes;
D O I:
10.5269/bspm.v23i1-2.7451
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that the existence of a Spin-structure on an oriented real vector bundle and the number of them can be obtained in terms of 2-fold coverings of the total space of the SO(n)-principal bundle associated to the vector bundle. Basically we use theory of covering spaces. We give a few elementary applications making clear that the Spin-bundle associated to a Spin-structure is not sufficient to classify such structure, as pointed out by [6].