Spin-structures and 2-fold coverings

被引:0
|
作者
Goncalves, Daciberg L. [1 ]
Hayat, Claude [2 ]
de Paula Leite Mello, Maria Herminia [3 ]
机构
[1] IME USP, Dept Matemat, Agencia Cidade Sao Paulo, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
[2] Univ Toulouse III, Dept Math, Lab Emile Picard, UMR 5580, F-31062 Toulouse, France
[3] Univ Estado Rio De Janeiro, Dept Anal Matemat, Rio De Janeiro, Brazil
来源
关键词
Buldles; principal bundles; orientable bundles; spin-structure; fundamental group; Stiefel-Whithney classes;
D O I
10.5269/bspm.v23i1-2.7451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the existence of a Spin-structure on an oriented real vector bundle and the number of them can be obtained in terms of 2-fold coverings of the total space of the SO(n)-principal bundle associated to the vector bundle. Basically we use theory of covering spaces. We give a few elementary applications making clear that the Spin-bundle associated to a Spin-structure is not sufficient to classify such structure, as pointed out by [6].
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条