ON THE PRODUCT OF CONSECUTIVE ELEMENTS OF AN ARITHMETIC-PROGRESSION

被引:18
|
作者
MARSZALEK, R
机构
来源
MONATSHEFTE FUR MATHEMATIK | 1985年 / 100卷 / 03期
关键词
D O I
10.1007/BF01299269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [41] On-chip Transformer Using Multipath Technique with Arithmetic-Progression Step Sub-Path Width
    Ren, Zhixiong
    Zhang, Kefeng
    Li, Cong
    Liu, Zhenglin
    Chen, Xiaofei
    Liu, Dongsheng
    Zou, Xuecheng
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2015, : 597 - 600
  • [42] PRIMITIVE ROOTS MODULO A PRIME AS CONSECUTIVE TERMS OF AN ARITHMETIC PROGRESSION
    VEGH, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 235 : 185 - &
  • [43] Perfect powers from products of consecutive terms in arithmetic progression
    Gyory, K.
    Hajdu, L.
    Pinter, A.
    COMPOSITIO MATHEMATICA, 2009, 145 (04) : 845 - 864
  • [44] ON SETS OF INTEGERS CONTAINING NO 4 ELEMENTS IN ARITHMETIC PROGRESSION
    SZEMEREDI, E
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 20 (1-2): : 89 - +
  • [45] Number of prime divisors in a product of terms of an arithmetic progression
    Laishram, S
    Shorey, TN
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 505 - 521
  • [46] The greatest prime divisor of a product of terms in an arithmetic progression
    Laishram, Shanta
    Shorey, T. N.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (03): : 425 - 436
  • [47] Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms
    Guoyou Qian
    Shaofang Hong
    Archiv der Mathematik, 2013, 100 : 337 - 345
  • [48] Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms
    Qian, Guoyou
    Hong, Shaofang
    ARCHIV DER MATHEMATIK, 2013, 100 (04) : 337 - 345
  • [49] Product of an integer free of small prime factors and prime in arithmetic progression
    Kam Hung Yau
    Monatshefte für Mathematik, 2021, 196 : 411 - 428
  • [50] An estimate for the length of an arithmetic progression the product of whose terms is almost square
    Laishram, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 451 - 475