On a sixth-order Jarratt-type method in Banach spaces

被引:1
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] NIT, Dept Math & Computat Sci, Mangalore 575025, Karnataka, India
关键词
Jarratt-type methods; Banach space; local convergence; Frechet-derivative;
D O I
10.1142/S1793557115500655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence analysis of a sixth-order Jarratt-type method in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first Frechet-derivative of the operator involved. Earlier studies such as [X. Wang, J. Kou and C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces, Numer. Algorithms 57 (2011) 441456.] require hypotheses up to the third Frechet-derivative. Numerical examples are also provided in this study.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Quartically Convergent Jarratt-Type Method for Nonlinear System of Equations
    Ghorbanzadeh, Mohammad
    Soleymani, Fazlollah
    ALGORITHMS, 2015, 8 (03): : 415 - 423
  • [22] Two new classes of optimal Jarratt-type fourth-order methods
    Soleymani, F.
    Khattri, S. K.
    Vanani, S. Karimi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 847 - 853
  • [23] A quartically convergent Jarratt-type method for nonlinear system of equations
    Department of Mathematics, Imam Reza International University, Khorasan Razavi, Mashhad, Sanabaad, Daneshgah
    91735-553, Iran
    不详
    Algorithms, 1600, 3 (415-423):
  • [24] The Third Order Mean-Based Jarratt-Type Method for Finding Simple Roots of Nonlinear Equation
    Ralevic, Nebojsa M.
    Cebic, Dejan
    Pavkov, Ivan
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2015, : 123 - 126
  • [25] Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences
    Behl, Ramandeep
    Argyros, Ioannis K.
    Mallawi, Fouad Othman
    Argyros, Christopher I.
    SYMMETRY-BASEL, 2021, 13 (07):
  • [26] Semilocal Convergence Of Sixth Order Method By Using Recurrence Relations In Banach Spaces
    Madhu, Kalyanasundaram
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 197 - 208
  • [27] Interpolants for sixth-order Numerov-type methods
    Alolyan, Ibraheem
    Simos, T. E.
    Tsitouras, Ch.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7349 - 7358
  • [28] Ball Convergence for an Inverse Free Jarratt-Type Method Under Hölder Conditions
    Argyros I.K.
    George S.
    International Journal of Applied and Computational Mathematics, 2017, 3 (1) : 157 - 164
  • [29] An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems
    Yaseen, Saima
    Zafar, Fiza
    Alsulami, Hamed H.
    AXIOMS, 2023, 12 (06)
  • [30] An interior penalty method for a sixth-order elliptic equation
    Gudi, Thirupathi
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1734 - 1753