On a sixth-order Jarratt-type method in Banach spaces

被引:1
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] NIT, Dept Math & Computat Sci, Mangalore 575025, Karnataka, India
关键词
Jarratt-type methods; Banach space; local convergence; Frechet-derivative;
D O I
10.1142/S1793557115500655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence analysis of a sixth-order Jarratt-type method in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first Frechet-derivative of the operator involved. Earlier studies such as [X. Wang, J. Kou and C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces, Numer. Algorithms 57 (2011) 441456.] require hypotheses up to the third Frechet-derivative. Numerical examples are also provided in this study.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Semilocal convergence of a sixth-order Jarratt method in Banach spaces
    Xiuhua Wang
    Jisheng Kou
    Chuanqing Gu
    Numerical Algorithms, 2011, 57 : 441 - 456
  • [2] Semilocal convergence of a sixth-order Jarratt method in Banach spaces
    Wang, Xiuhua
    Kou, Jisheng
    Gu, Chuanqing
    NUMERICAL ALGORITHMS, 2011, 57 (04) : 441 - 456
  • [3] A new sixth-order Jarratt-type iterative method for systems of nonlinear equations
    Yaseen, Saima
    Zafar, Fiza
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 585 - 599
  • [4] A new sixth-order Jarratt-type iterative method for systems of nonlinear equations
    Saima Yaseen
    Fiza Zafar
    Arabian Journal of Mathematics, 2022, 11 : 585 - 599
  • [5] Ball convergence analysis of Jarratt-type sixth-order method and its applications in solving some chemical problems
    Wenshuo Li
    Xiaofeng Wang
    Computational and Applied Mathematics, 2024, 43
  • [6] Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces
    Argyros, I. K.
    Gonzalez, D.
    Khattri, S. K.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (03): : 289 - 300
  • [7] Ball convergence analysis of Jarratt-type sixth-order method and its applications in solving some chemical problems
    Li, Wenshuo
    Wang, Xiaofeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [8] New Sixth-Order Improvements of the Jarratt Method
    Kim, Yongil
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 7 - 14
  • [9] A variant of Jarratt method with sixth-order convergence
    Wang, Xiuhua
    Kou, Jisheng
    Li, Yitian
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 14 - 19
  • [10] Semilocal convergence of a sixth-order method in Banach spaces
    Zheng, Lin
    Gu, Chuanqing
    NUMERICAL ALGORITHMS, 2012, 61 (03) : 413 - 427