Simulation and study of maximum power point tracking for rim-driven tidal current energy power generation systems

被引:0
|
作者
Ouyang, Yani [1 ,2 ]
Zhao, Wei [1 ]
Wang, Haifeng [1 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Tidal current energy power generation systems; Rim-driven; MPPT; Q-learning;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a maximum power point tracking (MPPT) control algorithm based on an intelligent reinforcement learning. The proposed model-free Q-learning algorithm realizes the online learning of the control algorithm of the tidal power generation system by updating the action values stored in the Q-table. By learning the optimal rotor speed-output power curve, the algorithm fits the optimal generator curve and applies the optimal P-e -omega(r) curve to the optimal control method of the tidal power generation systems. (c) 2023 Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:792 / 801
页数:10
相关论文
共 50 条
  • [41] Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives
    Yang, Bo
    Xie, Rui
    Guo, Zhengxun
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (08): : 2009 - 2022
  • [42] Current Status, Challenges, and Trends of Maximum Power Point Tracking for PV Systems
    Zeng, Chunyuan
    Yang, Bo
    Cao, Pulin
    Li, Qiang
    Deng, Jihan
    Tian, Songfeng
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [43] Maximum Power Point Tracking Simulation for a Photovoltaic System
    Handoko, Susatyo
    Sukmadi, Tejo
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER, AND ELECTRICAL ENGINEERING (ICITACEE), 2015, : 266 - 270
  • [44] A Comparative Study of Maximum Power Point Tracking Algorithms for Wind Energy Systems in Giligenting Island
    Soedibyo
    Adila, Ahmad Firyal
    Anam, Sjamsjul
    Ashari, Mochamad
    Proceedings - 2019 International Seminar on Intelligent Technology and Its Application, ISITIA 2019, 2019, : 114 - 119
  • [45] Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems
    Manoharan, Premkumar
    Subramaniam, Umashankar
    Babu, Thanikanti Sudhakar
    Padmanaban, Sanjeevikumar
    Holm-Nielsen, Jens Bo
    Mitolo, Massimo
    Ravichandran, Sowmya
    IEEE SYSTEMS JOURNAL, 2021, 15 (02): : 3024 - 3035
  • [46] T-S Fuzzy Control for Maximum Power Point Tracking of Solar Power Generation Systems
    Shao Shiquan
    Yin Ming
    Xu Limei
    Wang Yu
    GREEN POWER, MATERIALS AND MANUFACTURING TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2011, 84-85 : 120 - 124
  • [47] Application of Extension Sliding Mode Strategy to Maximum Power Point Tracking in Human Power Generation Systems
    Wang, Meng-Hui
    Yau, Her-Terng
    Jiang, Wei-Jhe
    APPLIED SCIENCES-BASEL, 2015, 5 (03): : 259 - 274
  • [48] T-S Fuzzy Maximum Power Point Tracking Control of Solar Power Generation Systems
    Chiu, Chian-Song
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (04) : 1123 - 1132
  • [49] Maximum Power Point Tracking Using Improved Steepest Ascent Method for Photovoltaic Power Generation Systems
    Yu Rongrong
    Wei Xueye
    Xie Tao
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1-2, 2008, : 375 - 381
  • [50] Adaptive Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems
    Ahn, Chang Wook
    Choi, Ju Yeop
    Lee, Dong-Ha
    An, Jinung
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2010, E93B (05) : 1334 - 1337