A SHARP LOWER-BOUND FOR THE CIRCUMFERENCE OF 1-TOUGH GRAPHS WITH LARGE DEGREE SUMS

被引:2
|
作者
HOA, VD
机构
[1] Dresden, 01217
关键词
D O I
10.1002/jgt.3190200204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every 1-tough graph G on n greater than or equal to 3 vertices with sigma(3) greater than or equal to n has a cycle of length at least min{n, n + (sigma(3)/3) - alpha + 1}, where sigma(3) denotes the minimum value of the degree sum of any 3 pairwise nonadjacent vertices and alpha the cardinality of a maximum independent set of vertices in G. Our inequality is sharp and implies some sufficient conditions of hamiltonian cycles. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 50 条
  • [21] On the shortness exponent of 1-tough, maximal planar graphs
    Tkac, M
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 321 - 328
  • [22] A LOWER-BOUND FOR THE SHORTNESS COEFFICIENT OF A CLASS OF GRAPHS
    HARANT, J
    WALTHER, H
    DISCRETE APPLIED MATHEMATICS, 1994, 51 (1-2) : 103 - 105
  • [23] A LOWER-BOUND FOR AREA-UNIVERSAL GRAPHS
    BILARDI, G
    CHAUDHURI, S
    DUBHASHI, D
    MEHLHORN, K
    INFORMATION PROCESSING LETTERS, 1994, 51 (02) : 101 - 105
  • [24] A PROBABILISTIC LOWER-BOUND ON THE INDEPENDENCE NUMBER OF GRAPHS
    SELKOW, SM
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 363 - 365
  • [25] On the shortness exponent of 1-tough, maximal planar graphs
    Department of Mathematics, Technical University, Letná 9, 042 00 Košice, Slovakia
    Discrete Math, 1-3 (321-328):
  • [26] On hamiltonicity of 1-tough triangle-free graphs
    Zheng, Wei
    Broersma, Hajo
    Wang, Ligong
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 433 - 441
  • [27] Cycles containing given subsets in 1-tough graphs
    Li, JP
    Shen, RQ
    Tian, F
    ARS COMBINATORIA, 2001, 58 : 193 - 204
  • [28] Cycles through specified vertices in 1-tough graphs
    Stacho, L
    ARS COMBINATORIA, 2000, 56 : 263 - 269
  • [29] On the minimum degree of minimally 1-tough, triangle-free graphs and minimally 3/2-tough, claw-free graphs
    Ma, Hui
    Hu, Xiaomin
    Yang, Weihua
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [30] Hamilton cycles in 1-tough triangle-free graphs
    Li, XW
    Wei, B
    Yu, ZG
    Zhu, YJ
    DISCRETE MATHEMATICS, 2002, 254 (1-3) : 275 - 287