FRACTIONAL EXCLUSION STATISTICS AND ANYONS

被引:9
|
作者
CHEN, W [1 ]
NG, YJ [1 ]
机构
[1] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
来源
PHYSICAL REVIEW B | 1995年 / 51卷 / 20期
关键词
D O I
10.1103/PhysRevB.51.14479
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Do anyons, dynamically realized by the field theoretic Chern-Simons construction, obey fractional exclusion statistics? We find that they do if the statistical interaction between anyons and antianyons is taken into account. For this anyon model, we show perturbatively that the exchange statistical parameter of anyons is equal to the exclusion statistical parameter. We obtain the same result by applying the relation between the exclusion statistical parameter and the second virial coefficient in the nonrelativistic limit. © 1995 The American Physical Society.
引用
收藏
页码:14479 / 14482
页数:4
相关论文
共 50 条
  • [41] SPIN AND STATISTICS OF GRAVITATIONAL ANYONS
    DESER, S
    MCCARTHY, JG
    NUCLEAR PHYSICS B, 1990, 344 (03) : 747 - 762
  • [42] Combinatorial interpretation of Haldane-Wu fractional exclusion statistics
    Aringazin, AK
    Mazhitov, MI
    PHYSICAL REVIEW E, 2002, 66 (02):
  • [43] From fractional exclusion statistics back to Bose and Fermi distributions
    Anghel, Dragos-Victor
    PHYSICS LETTERS A, 2013, 377 (41) : 2922 - 2925
  • [44] Virial expansions, exclusion statistics, and the fractional quantum Hall effect
    Tevosyan, K
    MacDonald, AH
    PHYSICAL REVIEW B, 1997, 56 (12): : 7517 - 7524
  • [45] Virial expansions, exclusion statistics, and the fractional quantum Hall effect
    Tevosyan, K.
    MacDonald, A. H.
    Physical Review B: Condensed Matter, 56 (12):
  • [46] ON THE FORMULATION OF EXTENDED THERMODYNAMICS IN THE CASE OF FRACTIONAL EXCLUSION STATISTICS.
    Trovato, M.
    DI Stefano, E.
    MATEMATICHE, 2024, 79 (02): : 505 - 518
  • [47] Signatures of Fractional Exclusion Statistics in the Spectroscopy of Quantum Hall Droplets
    Cooper, Nigel R.
    Simon, Steven H.
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [48] Local Exclusion and Lieb–Thirring Inequalities for Intermediate and Fractional Statistics
    Douglas Lundholm
    Jan Philip Solovej
    Annales Henri Poincaré, 2014, 15 : 1061 - 1107
  • [49] A drift-diffusion model based on the fractional exclusion statistics
    Nemnes, G. A.
    Anghel, D. V.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [50] Spin-statistics relation and Abelian braiding phase for anyons in the fractional quantum Hall effect
    Trung, Ha Quang
    Wang, Yuzhu
    Yang, Bo
    PHYSICAL REVIEW B, 2023, 107 (20)