Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations

被引:7
|
作者
Iacus, Stefano M.
Yoshida, Nakahiro [1 ,2 ]
机构
[1] Univ Tokyo, Tokyo 1538914, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Japan Sci & Technol Agcy, Tokyo 1538914, Japan
关键词
C13; C58;
D O I
10.1111/j.1468-0300.2010.00224.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we review recent advances on change point estimation for the volatility component of stochastic differential equations under different discrete sampling schemes. We consider both ergodic and non-ergodic cases, and present a Monte Carlo study on the change point estimator to compare the three methods under different setups.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 50 条
  • [31] Analysis of massive marked point patterns with stochastic partial differential equations
    Gomez-Rubio, Virgilio
    Cameletti, Michela
    Finazzi, Francesco
    SPATIAL STATISTICS, 2015, 14 : 179 - 196
  • [33] Optimal kernel estimation of spot volatility of stochastic differential equations
    Figueroa-Lopez, Jose E.
    Li, Cheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 4693 - 4720
  • [34] Point cloud synthesis with stochastic differential equations
    Li, Tingting
    Wang, Meili
    Liu, Xiaoxiao
    Liang, Hui
    Chang, Jian
    Zhang, Jian Jun
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2023, 34 (05)
  • [35] The Improved Stability Analysis of Numerical Method for Stochastic Delay Differential Equations
    Zhang, Yu
    Zhang, Enying
    Li, Longsuo
    MATHEMATICS, 2022, 10 (18)
  • [36] ERROR ESTIMATION IN NUMERICAL STABILITY ANALYSIS OF STOCHASTIC DIFFERENTIAL-EQUATIONS
    KARCH, G
    WEDIG, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T738 - T741
  • [37] NUMERICAL SOLUTION OF FREE STOCHASTIC DIFFERENTIAL EQUATIONS
    Schluechtermann, Georg
    Wibmer, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2623 - 2650
  • [38] Revisiting the numerical solution of stochastic differential equations
    Hurn, Stan
    Lindsay, Kenneth A.
    Xu, Lina
    CHINA FINANCE REVIEW INTERNATIONAL, 2019, 9 (03) : 312 - 323
  • [39] Numerical methods for simulation of stochastic differential equations
    Bayram, Mustafa
    Partal, Tugcem
    Buyukoz, Gulsen Orucova
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,