A MULTI-TERM BOLTZMANN-EQUATION ANALYSIS OF ELECTRON SWARMS IN GASES - THE TIME-OF-FLIGHT PARAMETERS

被引:16
|
作者
YACHI, S
DATE, H
KITAMORI, K
TAGASHIRA, H
机构
[1] HOKKAIDO UNIV,DEPT ELECT ENGN,SAPPORO,HOKKAIDO 060,JAPAN
[2] HOKKAIDO UNIV,COLL MED TECHNOL,SAPPORO,HOKKAIDO 060,JAPAN
[3] HOKKAIDO INST TECHNOL,DEPT IND ENGN,SAPPORO 006,JAPAN
关键词
D O I
10.1088/0022-3727/24/4/008
中图分类号
O59 [应用物理学];
学科分类号
摘要
An accurate and efficient method for solving the Boltzmann equation is presented. Using a multi-term expansion technique, the time-of-flight (TOF) electron swarm parameters (such as the centre-of-mass drift velocity W(r), the longitudinal D(L) and transverse D(T) diffusion coefficients) can be evaluated. The method utilizes an amalgamation of the conventional two-term expansion and the Galerkin method. The first two terms of the Legendre polynomial expansion of the electron energy distribution are obtained by the two-term method, while the third-order and higher-order terms are deduced by the Galerkin method. The present technique is applied to determine the electron energy distribution using Fourier components to solve the Boltzmann equation and TOF swarm parameters in methane gas. Good agreement with Monte Carlo simulation is obtained and the method is also applied to a previously described model gas.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 50 条
  • [41] EFFECT OF PENNING IONIZATION ON AN ELECTRON SWARM IN AR/NE MIXTURES - BOLTZMANN-EQUATION ANALYSIS
    SAKAI, Y
    SAWADA, S
    TAGASHIRA, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1986, 19 (09) : 1741 - 1750
  • [42] DEVELOPMENT OF ELECTRON AVALANCHES PARALLEL AND PERPENDICULAR TO ELECTRIC-FIELD - BOLTZMANN-EQUATION ANALYSIS
    TAGASHIRA, H
    TANIGUCHI, T
    KITAMORI, K
    SAKAI, Y
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (03) : L43 - L47
  • [43] ELECTRON SWARM DEVELOPMENT IN SF6 .1. BOLTZMANN-EQUATION ANALYSIS
    ITOH, H
    MIURA, Y
    IKUTA, N
    NAKAO, Y
    TAGASHIRA, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1988, 21 (06) : 922 - 930
  • [44] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [45] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [46] Analysis of multi-term time complex fractional diffusion equation with Hilfer-Hadamard fractional derivative
    Verma, Pratibha
    Tiwari, Surabhi
    MATHEMATICAL SCIENCES, 2024, : 693 - 705
  • [47] A multi-term spherical harmonic expansion of the Boltzmann equation for application to low-temperature collisional plasmas
    Swanekamp, S. B.
    Ottinger, P. F.
    Adamson, P. E.
    Giuliani, J. L.
    Petrova, Tz. B.
    Richardson, A. S.
    Rittersdorf, I. M.
    PHYSICS OF PLASMAS, 2019, 26 (10)
  • [48] Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    Du, Dianhu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (03) : 337 - 357
  • [49] A wavelet approach for the multi-term time fractional diffusion-wave equation
    Sarvestani, F. Soltani
    Heydari, M. H.
    Niknam, A.
    Avazzadeh, Z.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 640 - 661
  • [50] A multi term Boltzmann equation analysis of non-conservative electron transport in time-dependent electric and magnetic fields
    Dujko, S.
    White, R. D.
    24TH SUMMER SCHOOL AND INTERNATIONAL SYMPOSIUM ON THE PHYSICS OF IONIZED GASES, 2008, 133