Plagiarism Detection Using Machine Learning-Based Paraphrase Recognizer

被引:7
|
作者
Chitra, A. [2 ]
Rajkumar, Anupriya [1 ]
机构
[1] Dr Mahalingam Coll Engn & Technol, CSE Dept, Pollachi, Tamil Nadu, India
[2] PSG Coll Technol, Comp Applicat, Coimbatore, Tamil Nadu, India
关键词
Paraphrase recognition; passage-level plagiarism detection; support vector machine;
D O I
10.1515/jisys-2014-0146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plagiarism in free text has become a common occurrence due to the wide availability of voluminous information resources. Automatic plagiarism detection systems aim to identify plagiarized content present in large repositories. This task is rendered difficult by the use of sophisticated plagiarism techniques such as paraphrasing and summarization, which mask the occurrence of plagiarism. In this work, a monolingual plagiarism detection technique has been developed to tackle cases of paraphrased plagiarism. A support vector machine based paraphrase recognition system, which works by extracting lexical, syntactic, and semantic features from input text has been used. Both sentence-level and passage-level approaches have been investigated. The performance of the system has been evaluated on various corpora, and the passage level approach has registered promising results.
引用
收藏
页码:351 / 359
页数:9
相关论文
共 50 条
  • [21] API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models
    Almousa, May
    Basavaraju, Sai
    Anwar, Mohd
    2021 18TH INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2021,
  • [22] Paraphrase Identification using Machine Learning Techniques
    Chitra, A.
    Kumar, C. S. Saravana
    RECENT ADVANCES IN NETWORKING, VLSI AND SIGNAL PROCESSING, 2010, : 245 - +
  • [23] Software plagiarism detection in multiprogramming languages using machine learning approach
    Ullah, Farhan
    Wang, Junfeng
    Farhan, Muhammad
    Habib, Masood
    Khalid, Shehzad
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (04):
  • [24] Machine Learning-Based Image Forgery Detection Using Light Gradient-Boosting Machine
    Ugale, Meena
    Midhunchakkaravarthy, J.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 463 - 476
  • [25] Machine learning-based early rice disease detection using spectral profiles
    Conrad, A. O.
    Lee, D. Y.
    Li, W.
    Wang, G. L.
    Bonello, P.
    PHYTOPATHOLOGY, 2019, 109 (10) : 19 - 20
  • [26] Machine Learning-Based Unbalance Detection of a Rotating Shaft Using Vibration Data
    Mey, Oliver
    Neudeck, Willi
    Schneider, Andre
    Enge-Rosenblatt, Olaf
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 1606 - 1613
  • [27] Machine Learning-based Signal Processing Using Physiological Signals for Stress Detection
    Ghaderi, Adnan
    Frounchi, Javad
    Farnam, Alireza
    2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2015, : 93 - 98
  • [28] Hybrid Machine Learning-Based Approach for Anomaly Detection using Apache Spark
    Chliah, Hanane
    Battou, Amal
    Hadj, Maryem Ait el
    Laoufi, Adil
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 870 - 878
  • [29] Machine learning-based malware detection on Android devices using behavioral features
    Urmila, T. S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4659 - 4664
  • [30] Using Graph Theory for Improving Machine Learning-based Detection of Cyber Attacks
    Zonneveld, Giacomo
    Principi, Lorenzo
    Baldi, Marco
    2024 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR 2024, 2024, : 191 - 196