STATISTICS OF SELF-AVOIDING WALKS ON RANDOMLY DILUTED LATTICES

被引:37
|
作者
RINTOUL, MD
MOON, J
NAKANISHI, H
机构
[1] Department of Physics, Purdue University, West Lafayette
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 04期
关键词
D O I
10.1103/PhysRevE.49.2790
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A comprehensive numerical study of self-avoiding walks on randomly diluted lattices in two and three dimensions is carried out. The critical exponents nu and chi are calculated for various different occupation probabilities, disorder configuration ensembles, and walk weighting schemes. These results are analyzed and compared with those previously available. Various subtleties in the calculation and definition of these exponents are discussed. Precise numerical values are given for these exponents in most cases, and many new properties are recognized for them.
引用
收藏
页码:2790 / 2803
页数:14
相关论文
共 50 条
  • [41] SELF-AVOIDING WALKS AND TREES IN SPREAD-OUT LATTICES
    PENROSE, MD
    JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (1-2) : 3 - 15
  • [42] SELF-AVOIDING PATH WALKS ON LATTICES - A NEW UNIVERSALITY CLASS
    ZHOU, ZC
    LI, TC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (11): : 2257 - 2267
  • [43] Self-avoiding walks on strongly diluted lattices: Chain-growth simulations vs. exact enumeration
    Fricke, Niklas
    Janke, Wolfhard
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 216 (01): : 175 - 179
  • [44] Self-avoiding walks on strongly diluted lattices: Chain-growth simulations vs. exact enumeration
    Fricke Niklas
    Wolfhard Janke
    The European Physical Journal Special Topics, 2013, 216 : 175 - 179
  • [45] SPIRALLING SELF-AVOIDING WALKS
    KLEIN, DJ
    HITE, GE
    SCHMALZ, TG
    SEITZ, WA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04): : L209 - L214
  • [46] SPIRAL SELF-AVOIDING WALKS
    PRIVMAN, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15): : L571 - L573
  • [47] Weighted self-avoiding walks
    Geoffrey R. Grimmett
    Zhongyang Li
    Journal of Algebraic Combinatorics, 2020, 52 : 77 - 102
  • [48] IRREVERSIBLE SELF-AVOIDING WALKS
    LYKLEMA, JW
    KREMER, K
    JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) : 253 - 253
  • [49] Self-avoiding walks and amenability
    Grimmett, Geoffrey R.
    Li, Zhongyang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [50] The shape of self-avoiding walks
    Sciutto, SJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5455 - 5473