SOME REMARKS ON SIMILARITY AND SOLITON-SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATION

被引:11
|
作者
TAJIRI, M
机构
关键词
D O I
10.1143/JPSJ.53.3759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:3759 / 3764
页数:6
相关论文
共 50 条
  • [21] New exact solutions of nonlinear Klein-Gordon equation
    Zheng, Q
    Yue, P
    Gong, LX
    CHINESE PHYSICS, 2006, 15 (01): : 35 - 38
  • [22] LOCAL SMOOTH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    Cazenave, Thierry
    Naumkin, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (05): : 1649 - 1672
  • [23] On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation
    Polat, Necat
    Taskesen, Hatice
    FILOMAT, 2014, 28 (05) : 1073 - 1079
  • [24] Direct Lyapunov method and stability of some solutions of Klein-Gordon nonlinear equation
    Lavkin, A.G.
    Izvestiya VUZ: Radiofizika, 1991, 34 (03): : 333 - 335
  • [25] On existence and uniqueness of asymptotic N-soliton-like solutions of the nonlinear Klein-Gordon equation
    Friederich, Xavier
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2131 - 2191
  • [26] May Kink Solution to the Nonlinear Klein-Gordon Equation be Classified as a Soliton?
    Zav'yalov, D. V.
    Konchenkov, V. I.
    Kryuchkov, S. V.
    TECHNICAL PHYSICS, 2019, 64 (10) : 1391 - 1394
  • [27] INVARIANT MANIFOLDS AROUND SOLITON MANIFOLDS FOR THE NONLINEAR KLEIN-GORDON EQUATION
    Nakanishi, K.
    Schlag, W.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 1175 - 1210
  • [28] BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
    Li, He
    Meng, Xiang-Hua
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (15):
  • [29] An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation
    Lv, Xiumei
    Lai, Shaoyong
    Wu, YongHong
    CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 82 - 90
  • [30] Geometrical properties of matrix solutions of the nonlinear Klein-Gordon equation
    Gudkov, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (26): : L281 - L284