On Hardy and Hardy-Littlewood transforms in classes of functions with given majorant of modulus of continuity

被引:0
|
作者
Volosivets, S. S. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya St 83, Saratov 410028, Russia
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2009年 / 75卷 / 1-2期
关键词
Hardy-Littlewood operator; generalized Lipschitz classes; real Hardy space; functions of vanishing mean oscillation; direct approximation theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the works of D.V. Giang and F. Moricz (see [5]) and B. I. Golubov (see [7]) it follows that the Hardy-Littlewood operator B(f)(x) = x(-1) integral(x)(0) f(t) dt, x not equal 0, is bounded on BMO(R). We prove that B is also bounded on VMO(R) and that the generalized Lipschitz classes H-X(omega) (R) under additional conditions are invariant with respect to the operator B. A direct approximation theorem for VMO(R) is also obtained.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [31] GENERALIZATIONS OF HARDY-LITTLEWOOD INEQUALITY
    NEMETH, J
    ACTA SCIENTIARUM MATHEMATICARUM, 1971, 32 (3-4): : 295 - &
  • [32] Generalizations of the Hardy-Littlewood Inequality
    Jozsef, Nemeth
    ProQuest Dissertations and Theses Global,
  • [33] BINARY PROBLEMS OF HARDY-LITTLEWOOD
    VINOGRADOV, AI
    ACTA ARITHMETICA, 1985, 46 (01) : 33 - 56
  • [34] EXTENSION OF THE HARDY-LITTLEWOOD INEQUALITY
    KWONG, MK
    ZETTL, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (01) : 117 - 118
  • [35] Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces
    Bastero, J
    Milman, M
    Ruiz, FJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 65 - 74
  • [36] A NOTE ON THE ENDPOINT REGULARITY OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTIONS
    Liu, Feng
    Chen, Ting
    Wu, Huoxiong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (01) : 121 - 130
  • [37] On the variation of the Hardy-Littlewood maximal functions on finite graphs
    Liu, Feng
    Xue, Qingying
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 333 - 349
  • [38] On families between the Hardy-Littlewood and spherical maximal functions
    Dosidis, Georgios
    Grafakos, Loukas
    ARKIV FOR MATEMATIK, 2021, 59 (02): : 323 - 343
  • [39] On the polynomial Hardy-Littlewood inequality
    Araujo, G.
    Jimenez-Rodriguez, P.
    Munoz-Fernandez, G. A.
    Nunez-Alarcon, D.
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    Serrano-Rodriguez, D. M.
    ARCHIV DER MATHEMATIK, 2015, 104 (03) : 259 - 270
  • [40] Generalization of a Hardy-Littlewood theorem
    Poluyanova, M.F.
    Vestnik Moskovskogo Universiteta, Seriya 1 (Matematika Mekhanika), (04): : 96 - 97