RENORMALIZATION ON THE N-DIMENSIONAL TORUS

被引:15
|
作者
BALADI, V
ROCKMORE, D
TONGRING, N
TRESSER, C
机构
[1] ENS LYON,CNRS,URA 746,F-69364 LYON,FRANCE
[2] COLUMBIA UNIV,DEPT MATH,NEW YORK,NY 10027
[3] CUNY,,NEW YORK,NY 10036
[4] CUNY,UNIV CTR,NEW YORK,NY 10036
关键词
D O I
10.1088/0951-7715/5/5/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a technique for renormalization of any homeomorphism of the n-torus topologically conjugate to a rotation, and describe a related coding method for orbits of such maps.
引用
收藏
页码:1111 / 1136
页数:26
相关论文
共 50 条
  • [41] The difference between n-dimensional regularization and n-dimensional reduction in QCD
    J. Smith
    W. L. van Neerven
    The European Physical Journal C - Particles and Fields, 2005, 40 : 199 - 203
  • [42] N-dimensional Gregory-Bezier for N-dimensional cellular complexes
    Thery, S
    Bechmann, D
    Bertrand, Y
    WSCG '2001: SHORT COMMUNICATIONS AND POSTERS, 2001, : SH16 - SH23
  • [43] N-dimensional homotopy
    Aronszajn, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 202 : 1475 - 1478
  • [44] The n-dimensional hypervolume
    Blonder, Benjamin
    Lamanna, Christine
    Violle, Cyrille
    Enquist, Brian J.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (05): : 595 - 609
  • [45] N-DIMENSIONAL VOLUME
    EISENSTEIN, M
    KLAMKIN, MS
    SIAM REVIEW, 1959, 1 (01) : 69 - 70
  • [46] ON N-DIMENSIONAL IMPEDANCES
    ZEHEB, E
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1983, 11 (01) : 106 - 108
  • [47] n-dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids
    Mamistvalov, AG
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (08) : 819 - 831
  • [48] The Skew Product on n-Dimensional Cell with Transitive but not Totally Transitive n-Dimensional Attractor
    Fil'chenkov, A. S.
    RUSSIAN MATHEMATICS, 2016, 60 (06) : 79 - 87
  • [49] n-Dimensional (S, N)-implications
    Zanotelli, Rosana
    Reiser, Renata
    Bedregal, Benjamin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 126 : 1 - 26
  • [50] ON INVARIANTS OF IMMERSIONS OF AN n-DIMENSIONAL MANIFOLD IN AN n-DIMENSIONAL PSEUDO-EUCLIDEAN SPACE
    Khadjiev, Djavvat
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 : 49 - 70