ROTATIONALLY INVARIANT CODED PSK SIGNALS

被引:6
|
作者
ZHU, ZC
CLARK, AP
机构
关键词
D O I
10.1049/ip-f-1.1987.0009
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [41] On the Weyl transform for rotationally invariant symbols
    Norbert Ortner
    Peter Wagner
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 769 - 791
  • [42] Minimal rotationally invariant bases for hyperelasticity
    Miller, GH
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (06) : 2050 - 2075
  • [43] On rotationally invariant vector fields in the plane
    Berhanu, S
    Meziani, A
    MANUSCRIPTA MATHEMATICA, 1996, 89 (03) : 355 - 371
  • [44] On the Cheeger problem for rotationally invariant domains
    Bobkov, Vladimir
    Parini, Enea
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 503 - 522
  • [45] DOA IDENTIFIABILITY FOR ROTATIONALLY INVARIANT ARRAYS
    SWINDLEHURST, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (07) : 1825 - 1828
  • [46] Precision rotationally invariant curve parameterization
    Alshina E.A.
    Ivanchenko E.S.
    Kalitkin N.N.
    Tishkin V.F.
    Mathematical Models and Computer Simulations, 2009, 1 (1) : 11 - 20
  • [47] On the Cheeger problem for rotationally invariant domains
    Vladimir Bobkov
    Enea Parini
    manuscripta mathematica, 2021, 166 : 503 - 522
  • [48] On the Fourier transform of rotationally invariant distributions
    Norbert Ortner
    Peter Wagner
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 469 - 484
  • [49] On the Weyl transform for rotationally invariant symbols
    Ortner, Norbert
    Wagner, Peter
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 769 - 791
  • [50] OSRI: A Rotationally Invariant Binary Descriptor
    Xu, Xianwei
    Tian, Lu
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 2983 - 2995