Training Artificial Neural Networks by a Hybrid PSO-CS Algorithm

被引:51
|
作者
Chen, Jeng-Fung [1 ]
Do, Quang Hung [2 ]
Hsieh, Ho-Nien [1 ]
机构
[1] Feng Chia Univ, Dept Ind Engn & Syst Management, Taichung 40724, Taiwan
[2] Univ Transport Technol, Dept Elect & Elect Engn, Hanoi 100000, Vietnam
关键词
D O I
10.3390/a8020292
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Presenting a satisfactory and efficient training algorithm for artificial neural networks (ANN) has been a challenging task in the supervised learning area. Particle swarm optimization (PSO) is one of the most widely used algorithms due to its simplicity of implementation and fast convergence speed. On the other hand, Cuckoo Search (CS) algorithm has been proven to have a good ability for finding the global optimum; however, it has a slow convergence rate. In this study, a hybrid algorithm based on PSO and CS is proposed to make use of the advantages of both PSO and CS algorithms. The proposed hybrid algorithm is employed as a new training method for feedforward neural networks (FNNs). To investigate the performance of the proposed algorithm, two benchmark problems are used and the results are compared with those obtained from FNNs trained by original PSO and CS algorithms. The experimental results show that the proposed hybrid algorithm outperforms both PSO and CS in training FNNs.
引用
收藏
页码:292 / 308
页数:17
相关论文
共 50 条