INVARIANCE THEORY FOR SECOND-ORDER VARIATIONAL PROBLEMS

被引:0
|
作者
LOGAN, JD [1 ]
BLAKESLEE, JS [1 ]
机构
[1] KANSAS STATE UNIV,MANHATTAN,KS 66506
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A310 / A310
页数:1
相关论文
共 50 条
  • [41] New second-order optimality conditions for variational problems with C2-Hamiltonians
    Zeidan, V
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (02) : 577 - 609
  • [42] Second-order energies on thin structures:: variational theory and non-local effects
    Bouchitté, G
    Fragalà, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (01) : 228 - 267
  • [43] Second-order induction in prediction problems
    Argenziano, Rossella
    Gilboa, Itzhak
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (21) : 10323 - 10328
  • [44] Second-order results for linear problems
    不详
    AVERAGE-CASE ANALYSIS OF NUMERICAL PROBLEMS, 2000, 1733 : 33 - 66
  • [45] Currying second-order unification problems
    Levy, J
    Villaret, M
    REWRITING TECHNIQUES AND APPLICATIONS, 2002, 2378 : 326 - 339
  • [46] A second-order sequential optimality condition for nonlinear second-order cone programming problems
    Fukuda, Ellen H.
    Okabe, Kosuke
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (03) : 911 - 939
  • [47] Variational symmetries of Lagrangian systems with second-order derivatives
    Ege Coban
    Ilmar Gahramanov
    Dilara Kosva
    The European Physical Journal Plus, 138
  • [48] Second-order dynamical systems associated to variational inequalities
    Bot, Radu Ioan
    Csetnek, Erno Robert
    APPLICABLE ANALYSIS, 2017, 96 (05) : 799 - 809
  • [49] A COMPACTNESS RESULT FOR A SECOND-ORDER VARIATIONAL DISCRETE MODEL
    Braides, Andrea
    Defranceschi, Anneliese
    Vitali, Enrico
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 389 - 410
  • [50] Variational symmetries of Lagrangian systems with second-order derivatives
    Coban, Ege
    Gahramanov, Ilmar
    Kosva, Dilara
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (07):