POLYNOMIAL-EXPANSIONS FOR SOLUTIONS OF DXRU(X,T)=D,U(X,T),R=2,3,4,...

被引:12
|
作者
KEMNITZ, H
机构
关键词
D O I
10.1137/0513042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:640 / 650
页数:11
相关论文
共 50 条
  • [31] GROUP CLASSIFICATION AND SYMMETRY REDUCTIONS OF THE NONLINEAR DIFFUSION CONVECTION EQUATION U(T)=(D(U)U(X))(X)-K'(U)U(X)
    YUNG, CM
    VERBURG, K
    BAVEYE, P
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (03) : 273 - 278
  • [32] PHOTOEMISSION-STUDY OF THE URANIUM TERNARY COMPOUNDS U3T3X4(T = NI, CU X = SN, SB)
    TAKABATAKE, T
    MIYATA, S
    FUJII, H
    YOKOYAMA, K
    TANIGUCHI, M
    SOLID STATE COMMUNICATIONS, 1992, 81 (05) : 433 - 436
  • [33] Magnetic properties and electronic structure of R3T4X4 compounds (R = Pr, Nd; T = Cu, Ag; X = Ge, Sn)
    Penc, B.
    Kaczorowski, D.
    Szytula, A.
    Winiarski, A.
    Zarzycki, A.
    INTERMETALLICS, 2007, 15 (11) : 1489 - 1496
  • [34] The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0
    Tekcan, Ahmet
    Ozkoc, Arzu
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 251 - 260
  • [35] Stable quasiperiodic solutions in the Hopf bifurcation with D4 X T2 symmetry
    Dawes, JHP
    PHYSICS LETTERS A, 1999, 262 (2-3) : 158 - 165
  • [36] Magnetic ordering schemes in R3T4X4 compounds
    Wawrzynska, E.
    Szytula, A.
    MATERIALS SCIENCE-POLAND, 2006, 24 (03): : 543 - 549
  • [37] Superconductivity of rapidly quenched YC(NiB)x (x = 2,3,4) borocarbides
    Kim, KS
    Yu, SC
    Strom, V
    Rao, KV
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 177 : 553 - 554
  • [38] Site preference and vibrational properties of R3T4+xAl12-x (R=Y, Ce, Gd, U, Th; T=Fe, Ru)
    Chen, Yi
    Shen, Jiang
    Chen, Nan-xian
    JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (03) : 504 - 509
  • [39] Peculiarities of U2T2X hydrides
    Miliyanchuk, K.
    Havela, L.
    Pereira, L. C. J.
    Goncalves, A. P.
    Prokes, K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 945 - 947
  • [40] On weak solutions of the initial value problem for the equation utt = a(x, t)uxx + f (t, x, u, ut, ux)
    Zhidkov, Peter
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 103 - 116