L-POLYTOPES AND EQUIANGULAR LINES

被引:3
|
作者
DEZA, M
GRISHUKHIN, VP
机构
[1] CNRS, LIENS, Ecole Normale Superieure, 75230 Paris Cedex, 45, rue d'Ulm
关键词
INTEGRAL LATTICE; EQUIANGULAR LINES; POLYTOPE;
D O I
10.1016/0166-218X(94)00086-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A construction providing sets of equiangular lines from integral lattices is given. Conditions are given when a set of equiangular lines with only one pillar determines an L-polytope of an integral lattice. Several examples of L-polytopes related to sets of equiangular lines are given.
引用
收藏
页码:181 / 214
页数:34
相关论文
共 50 条
  • [31] NEW UPPER BOUNDS FOR EQUIANGULAR LINES BY PILLAR DECOMPOSITION
    King, Emily J.
    Tang, Xiaoxian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2479 - 2508
  • [32] Constructions of complex equiangular lines from mutually unbiased bases
    Jedwab, Jonathan
    Wiebe, Amy
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 73 - 89
  • [33] GRAPH REPRESENTATIONS, 2-DISTANCE SETS, AND EQUIANGULAR LINES
    NEUMAIER, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 141 - 156
  • [34] Frames over finite fields: Equiangular lines in orthogonal geometry
    Greaves, Gary R. W.
    Iverson, Joseph W.
    Jasper, John
    Mixon, Dustin G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 639 : 50 - 80
  • [35] k-Point semidefinite programming bounds for equiangular lines
    de Laat, David
    Machado, Fabricio Caluza
    de Oliveira Filho, Fernando Mario
    Vallentin, Frank
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 533 - 567
  • [36] Constructions of complex equiangular lines from mutually unbiased bases
    Jonathan Jedwab
    Amy Wiebe
    Designs, Codes and Cryptography, 2016, 80 : 73 - 89
  • [37] k-Point semidefinite programming bounds for equiangular lines
    David de Laat
    Fabrício Caluza Machado
    Fernando Mário de Oliveira Filho
    Frank Vallentin
    Mathematical Programming, 2022, 194 : 533 - 567
  • [38] ON EQUIANGULAR LINES IN 17 DIMENSIONS AND THE CHARACTERISTIC POLYNOMIAL OF A SEIDEL MATRIX
    Greaves, Gary R. W.
    Yatsyna, Pavlo
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 3041 - 3061
  • [39] Upper bounds for s-distance sets and equiangular lines
    Glazyrin, Alexey
    Yu, Wei-Hsuan
    ADVANCES IN MATHEMATICS, 2018, 330 : 810 - 833
  • [40] Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs
    Greaves, Gary R. W.
    Syatriadi, Jeven
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 201