ELASTOPLASTIC DEFORMATION OF SINTERED POROUS MATERIALS IN FORMING PROCESSES .1. THEORY OF ELASTOPLASTIC DEFORMATION OF POROUS MATERIALS

被引:0
|
作者
GOROKHOV, BM
DOROSHKEVICH, EA
ZVONAREV, EV
SHTERN, MB
SHTEFAN, EV
机构
[1] ACAD SCI UKRAINE,INST MAT SCI,KIEV,UKRAINE,USSR
[2] KIEV STRENGTH PROBLEMS TECHNOL INST,KIEV,UKRAINE,USSR
来源
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
引用
收藏
页码:283 / 286
页数:4
相关论文
共 50 条
  • [22] Theory of flow and deformation of swelling porous materials at the macroscale
    Schreyer-Bennethum, Lynn
    COMPUTERS AND GEOTECHNICS, 2007, 34 (04) : 267 - 278
  • [23] Admissible deformation fields for the homogenization of elastoplastic materials with generalized periodicity
    Tsalis, Dimitrios
    Chatzigeorgiou, George
    Charalambakis, Nicolas
    MECHANICS RESEARCH COMMUNICATIONS, 2013, 53 : 43 - 46
  • [24] Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale
    Luo, X
    Vasseur, G
    Pouya, A
    Lamoureux-Var, V
    Poliakov, A
    MARINE AND PETROLEUM GEOLOGY, 1998, 15 (02) : 145 - 162
  • [25] ON THE EFFECTS OF PLASTIC ROTATION IN THE FINITE DEFORMATION OF ANISOTROPIC ELASTOPLASTIC MATERIALS
    LORET, B
    MECHANICS OF MATERIALS, 1983, 2 (04) : 287 - 304
  • [26] Model of Elastoplastic Deformation of Materials, Based on the Gauge Theory of Defects with Allowance for Energy Dissipation
    S. P. Kiselev
    Journal of Applied Mechanics and Technical Physics, 2004, 45 (2) : 292 - 300
  • [27] A LARGE-DEFORMATION MULTIPLICATIVE FRAMEWORK FOR ANISOTROPIC ELASTOPLASTIC MATERIALS WITH APPLICATION TO SHEET METAL FORMING
    Vladimirov, I. N.
    Schwarze, M.
    Pietryga, M. P.
    Frischkorn, J.
    Reese, S.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 : 167 - 170
  • [28] A Simple Elastoplastic Damage Constitutive Model of Porous Rock Materials
    Chao, Chen
    Yajun, Cao
    Yanli, Jin
    Xuelei, Duan
    Shifan, Liu
    Kuan, Zhang
    FRONTIERS IN PHYSICS, 2022, 10
  • [29] Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials
    V. M. Sadovskii
    Computational Mathematics and Mathematical Physics, 2020, 60 : 723 - 736
  • [30] Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials
    Sadovskii, V. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (04) : 723 - 736