Generalized Derivations with Vanishing Power Values on Lie Ideals

被引:0
|
作者
Dhara, Basudeb [1 ]
机构
[1] Belda Coll, Paschim Medinipur 721424, WB, India
关键词
Prime ring; Derivation; Generalized derivation; Utumi quotient ring; Extended centroid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider R a prime ring of char R not equal 2 with Utumi quotient ring U and extended centroid C. Let L be a noncentral Lie ideal of R and H a nonzero generalized derivation of R such that (u(1)(n) [H (u), u] u (n)(2)) (n)(3) = 0 for all u is an element of L, where n(1) >= 0, n(2) >= 0, n(3) >= 1 are fixed integers. Then one of the following statements holds: (i) H (x) = a x for all x is an element of R and for some a is an element of C unless R satisfies S 4, the standard identity in four variables; (ii) R satisfies S-4 and H (x) = lambda x - (px + xp) for all x is an element of R and for some lambda is an element of C, p is an element of U
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [31] GENERALIZED SKEW DERIVATIONS ON LIE IDEALS
    De Filippis, Vincenzo
    Demir, Cagri
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (01): : 113 - 129
  • [32] On generalized Lie derivations of Lie ideals of prime algebras
    Liao, Ping-Bao
    Liu, Cheng-Kai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1236 - 1242
  • [33] POWER VALUES OF DERIVATIONS WITH ANNIHILATOR CONDITIONS ON LIE IDEALS IN PRIME RINGS
    Dhara, Basudeb
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2159 - 2167
  • [34] Cocentralizing derivations and nilpotent values on Lie ideals
    Nurcan Argac
    Vincenzo De Filippis
    Indian Journal of Pure and Applied Mathematics, 2010, 41 : 475 - 483
  • [35] COCENTRALIZING DERIVATIONS AND NILPOTENT VALUES ON LIE IDEALS
    Argac, Nurcan
    De Filippis, Vincenzo
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (03): : 475 - 483
  • [36] Some Results on Generalized Derivations and (σ, τ)- Lie Ideals
    Guven, Evrim
    FILOMAT, 2018, 32 (16) : 5527 - 5535
  • [37] Identities with Generalized Skew Derivations on Lie Ideals
    Vincenzo De Filippis
    Ajda Fošner
    Feng Wei
    Algebras and Representation Theory, 2013, 16 : 1017 - 1038
  • [38] Generalized derivations and left multipliers on Lie ideals
    Dhara, Basudeb
    De Filippis, Vincenzo
    Sharma, Rajendra K.
    AEQUATIONES MATHEMATICAE, 2011, 81 (03) : 251 - 261
  • [39] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [40] An identity with generalized skew derivations on Lie ideals
    Rehman, Nadeem Ur
    Nisar, Junaid
    Raza, Mohd Arif
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 455 - 463