THE NONLINEAR STRUCTURE ON THE GENERAL QUANTUM HYPERPLANES - THE QUANTUM HYPERSURFACES AND THE NONLINEAR REALIZATIONS OF THE QUANTUM GROUPS

被引:4
|
作者
ZHONG, ZZ
机构
关键词
D O I
10.1142/S0217732394002185
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we prove that by the use of an extended algebra the nonlinear transformations of the general quantum hyperplanes can be obtained. The images of this transformation and its linear part, which are two quantum hyperspaces, can be interpreted as a quantum hypersurface and its quantum tangent hyperplane, respectively. The quantum group concerned is nonlinearly realized on this quantum hypersurface. The concrete results of GL(q)(N), as an example, are calculated.
引用
收藏
页码:2315 / 2323
页数:9
相关论文
共 50 条
  • [21] Nonlinear Quantum Physics
    Croca, J. R.
    de Lemos e Silva Cordovil, Joao Luis
    REVIEWS IN THEORETICAL SCIENCE, 2014, 2 (03) : 181 - 200
  • [22] Quantum photodetection distributions with 'nonlinear' quantum jump superoperators
    Dodonov, AV
    Mizrahi, SS
    Dodonov, VV
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (04) : 99 - 108
  • [23] Theory of quantum nonlinear localized modes in quantum lattices
    Takeno, S
    Kubota, M
    Kawasaki, K
    PHYSICA D, 1998, 113 (2-4): : 366 - 373
  • [24] Nonlinear models in quantum optics through quantum algebras
    Ballesteros, A
    Chumakov, S
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 13 - 17
  • [25] NONLINEAR QUANTUM DYNAMICS IN SEMICONDUCTOR QUANTUM-WELLS
    SHERWIN, MS
    CRAIG, K
    GALDRIKIAN, B
    HEYMAN, J
    MARKELZ, A
    CAMPMAN, K
    FAFARD, S
    HOPKINS, PF
    GOSSARD, A
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 83 (1-3) : 229 - 242
  • [26] Nonlinear dynamics in quantum physics -: The study of quantum chaos
    Caron, LA
    Kröger, H
    Luo, XQ
    Melkonyan, G
    Moriarty, KJM
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (1-3): : 441 - 454
  • [27] Nonlinear Models in Quantum Optics through Quantum Algebras
    Angel Ballesteros
    Sergey Chumakov
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 13 - 17
  • [28] GENERAL DOUBLE QUANTUM GROUPS
    Ma, Tianshui
    Wang, Shuanhong
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (02) : 645 - 672
  • [29] On quantum general linear groups
    Gerritzen, L
    Holtkamp, R
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (01): : 43 - 54
  • [30] Characterization of quantum teleportation processes by nonlinear quantum channel and quantum mutual entropy
    Inoue, K
    Oya, M
    Suyari, H
    PHYSICA D, 1998, 120 (1-2): : 117 - 124