UTILITY MAXIMIZATION IN AFFINE STOCHASTIC VOLATILITY MODELS

被引:32
|
作者
Kallsen, Jan [1 ]
Muhle-Karbe, Johannes [2 ]
机构
[1] Christian Albrechts Univ Kiel, Math Seminar, Westring 383, D-24118 Kiel, Germany
[2] Univ Wien, Fak Math, A-1090 Vienna, Austria
关键词
Portfolio optimization; stochastic volatility; martingale method;
D O I
10.1142/S0219024910005851
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider the classical problem of maximizing expected utility from terminal wealth. With the help of a martingale criterion explicit solutions are derived for power utility in a number of affine stochastic volatility models.
引用
收藏
页码:459 / 477
页数:19
相关论文
共 50 条
  • [41] Utility maximization, risk aversion, and stochastic dominance
    Beiglboeck, Mathias
    Muhle-Karbe, Johannes
    Temme, Johannes
    MATHEMATICS AND FINANCIAL ECONOMICS, 2012, 6 (01) : 1 - 13
  • [42] Implied Stochastic Volatility Models
    Ait-Sahalia, Yacine
    Li, Chenxu
    Li, Chen Xu
    REVIEW OF FINANCIAL STUDIES, 2021, 34 (01): : 394 - 450
  • [43] MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS
    Corlay, Sylvain
    Lebovits, Joachim
    Vehel, Jacques Levy
    MATHEMATICAL FINANCE, 2014, 24 (02) : 364 - 402
  • [44] Complications with stochastic volatility models
    Sin, CA
    ADVANCES IN APPLIED PROBABILITY, 1998, 30 (01) : 256 - 268
  • [45] Gamma stochastic volatility models
    Abraham, B
    Balakrishna, N
    Sivakumar, R
    JOURNAL OF FORECASTING, 2006, 25 (03) : 153 - 171
  • [46] INFLUENCE IN STOCHASTIC VOLATILITY MODELS
    Motta, Anderson C. O.
    Hotta, Luiz K.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 27 (01) : 27 - 45
  • [47] Stochastic volatility and DSGE models
    Andreasen, Martin M.
    ECONOMICS LETTERS, 2010, 108 (01) : 7 - 9
  • [48] Complete models with stochastic volatility
    Hobson, DG
    Rogers, LCG
    MATHEMATICAL FINANCE, 1998, 8 (01) : 27 - 48
  • [50] On calibration of stochastic and fractional stochastic volatility models
    Mrazek, Milan
    Pospisil, Jan
    Sobotka, Tomas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (03) : 1036 - 1046