BLOWUP FOR A TIME-OSCILLATING NONLINEAR HEAT EQUATION

被引:0
|
作者
Cazenave, Th. [1 ,2 ]
Escobedo, M. [3 ,4 ]
Zuazua, E. [4 ,5 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Basque Country, Dept Matemat, Bilbao 48080, Spain
[4] BCAM, Bilbao 48009, Basque Country, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Basque Country, Spain
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2013年 / 82卷 / 01期
关键词
semilinear heat equation; time-oscillating nonlinearity; finite-time blowup;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a nonlinear heat equation with a periodic time oscillating term in factor of the nonlinearity. In particular, we give examples showing how the behavior of the solution can drastically change according to both the frequency of the oscillating factor and the size of the initial value.
引用
收藏
页码:125 / 146
页数:22
相关论文
共 50 条
  • [31] Fermions in graphene with magnetic field and time-oscillating potential
    El Aitouni, Rachid
    Jellal, Ahmed
    PHYSICS LETTERS A, 2022, 447
  • [32] Sedimentation of particles acted upon by a vertical, time-oscillating force
    Chvosta, Petr
    Schulz, Michael
    Mayr, Elisabeth
    Reineker, Peter
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [33] Current reversal of active particles in channel with time-oscillating boundaries
    Lu, Yan
    Rong, Zhijiang
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [34] Highly time-oscillating solutions for very fast diffusion equations
    Luis Vazquez, Juan
    Winkler, Michael
    JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (03) : 725 - 742
  • [35] Finite time blowup for the nonlinear Schrödinger equation with a delta potential
    Hauser, Brandon
    Holmes, John
    O'Keefe, Eoghan
    Raynor, Sarah
    Yu, Chuanyang
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04): : 591 - 604
  • [36] FINITE-TIME BLOWUP FOR A SCHRODINGER EQUATION WITH NONLINEAR SOURCE TERM
    Cazenave, Thierry
    Martel, Yvan
    Zhao, Lifeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 1171 - 1183
  • [37] Tunneling time and transmission properties in strained graphene with a time-oscillating potential
    Sattari, Farhad
    Mirershadi, Soghra
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [38] Highly time-oscillating solutions for very fast diffusion equations
    Juan Luis Vázquez
    Michael Winkler
    Journal of Evolution Equations, 2011, 11 : 725 - 742
  • [39] Blowup Solutions of the Nonlinear Thomas Equation
    M. O. Korpusov
    Theoretical and Mathematical Physics, 2019, 201 : 1457 - 1467
  • [40] Global existence and blowup for sign-changing solutions of the nonlinear heat equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) : 2669 - 2680