NONCOMMUTATIVE SPHERES .3. IRRATIONAL ROTATIONS

被引:45
|
作者
BRATTELI, O
KISHIMOTO, A
机构
[1] UNIV TRONDHEIM,INST MATH,N-7034 TRONDHEIM,NORWAY
[2] HOKKAIDO UNIV,DEPT MATH,SAPPORO,HOKKAIDO 060,JAPAN
关键词
D O I
10.1007/BF02097244
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let A(theta) be the irrational rotation algebra, i. e. the C*-algebra generated by two unitaries U, V satisfying VU = e2-pi-i-theta UV, with theta-irrational, and consider the fixed point subalgebra B(theta) under the flip automorphism U --> U-1, V --> V-1. We prove that B(theta) is an AF-algebra.
引用
收藏
页码:605 / 624
页数:20
相关论文
共 50 条
  • [21] The shrinking target property of irrational rotations
    Kim, Dong Han
    NONLINEARITY, 2007, 20 (07) : 1637 - 1643
  • [22] Subdiffusive behavior generated by irrational rotations
    Huveneers, F.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1217 - 1233
  • [23] Noncommutative spheres and instantons
    Landi, G
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 3 - 56
  • [24] Dynamical noncommutative spheres
    Sitarz, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 241 (01) : 161 - 175
  • [25] Some noncommutative spheres
    Natsume, T
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 57 - 66
  • [26] On skew products of irrational rotations with tori
    Zhang, Q
    CONVERGENCE IN ERGODIC THEORY AND PROBABILITY, 1996, 5 : 435 - 445
  • [27] On the distribution of partial sums of irrational rotations
    Mori, Yoshiyuki
    Shimaru, Naoto
    Takashima, Keizo
    PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (01) : 88 - 97
  • [28] Constructions of cocycles over irrational rotations
    Bulatek, W
    Lemanczyk, M
    Rudolph, D
    STUDIA MATHEMATICA, 1997, 125 (01) : 1 - 11
  • [29] Dynamical Noncommutative Spheres
    Andrzej Sitarz
    Communications in Mathematical Physics, 2003, 241 : 161 - 175
  • [30] An upper estimate for the discrepancy of irrational rotations
    K. Doi
    N. Shimaru
    K. Takashima
    Acta Mathematica Hungarica, 2017, 152 : 109 - 113