The Short Pulse Equation - a symmetry study

被引:3
|
作者
Huber, Alfred [1 ]
机构
[1] Prottesweg 2a, A-8062 Kumberg, Austria
关键词
Nonlinear partial differential equations; evolution equations; Short-Pulse-Equation; similarity solutions; approximate symmetries;
D O I
10.3233/JCM-2010-0262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The classical Lie group formalism is applied to deduce classes of solutions of a special nonlinear partial differential equation, the so called Short-Pulse-Equation important in physical applications. We determine the Lie point symmetries and their algebraic properties. Similarity solutions are given as well as nonlinear transformations. In addition we discuss approximate symmetries for the first time. This analysis allows one to deduce wider classes of new unknown solutions either of practical or theoretical use.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [41] Rigorous justification of the short-pulse equation
    Dmitry Pelinovsky
    Guido Schneider
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1277 - 1294
  • [42] Analysis of a coupled short pulse system via symmetry method
    Gao, Ben
    He, Chunfang
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2627 - 2636
  • [43] Analysis of a coupled short pulse system via symmetry method
    Ben Gao
    Chunfang He
    Nonlinear Dynamics, 2017, 90 : 2627 - 2636
  • [44] Well-posedness results for the short pulse equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1529 - 1557
  • [45] The bi-Hamiltonian structure of the short pulse equation
    Brunelli, J. C.
    PHYSICS LETTERS A, 2006, 353 (06) : 475 - 478
  • [46] Darboux Transformation and Multisoliton Solutions of the Short Pulse Equation
    Saleem, Usman
    ul Hassan, Mahmood
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (09)
  • [47] BOUNDED TRAVELING WAVE SOLUTIONS TO THE SHORT PULSE EQUATION
    Zhuang, Binxian
    Xiang, Yuanjiang
    Dai, Xiaoyu
    Wen, Shuangchun
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
  • [48] On two new types of modified short pulse equation
    Zhao, Dan
    Zhaqilao
    NONLINEAR DYNAMICS, 2020, 100 (01) : 615 - 627
  • [49] On two new types of modified short pulse equation
    Dan Zhao
    Nonlinear Dynamics, 2020, 100 : 615 - 627
  • [50] Well-posedness results for the short pulse equation
    Giuseppe Maria Coclite
    Lorenzo di Ruvo
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1529 - 1557