CANONICAL FORMULATION OF SINGULAR SYSTEMS

被引:78
|
作者
GULER, Y
机构
[1] METU Physics Department, Ankara
关键词
CLASSICAL MECHANICS OF DISCRETE SYSTEMS; GENERAL MATHEMATICAL ASPECTS;
D O I
10.1007/BF02722849
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Singular classical systems are studied by the equivalent Lagrangians method. The method leads us to a set of Hamilton-Jacobi partial differential equations. Total differential equations in many variables are obtained as equations of motion.
引用
收藏
页码:1389 / 1395
页数:7
相关论文
共 50 条
  • [21] CANONICAL FORMULATION OF SUPERMECHANICS
    MATSUMOTO, S
    PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (01): : 1 - 6
  • [22] CANONICAL FORMULATION OF SUPERGRAVITY
    PILATI, M
    NUCLEAR PHYSICS B, 1978, 132 (1-2) : 138 - 154
  • [23] Static Output Stabilisation of Singular LPV Systems: LMI Formulation
    Chadli, M.
    Darouach, M.
    Daafouz, J.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4793 - 4796
  • [24] Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian
    Song, Chuanjing
    Agrawal, Om Prakash
    ACTA APPLICANDAE MATHEMATICAE, 2021, 172 (01)
  • [25] Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian
    Chuanjing Song
    Om Prakash Agrawal
    Acta Applicandae Mathematicae, 2021, 172
  • [26] CANONICAL SINGULAR HERMITIAN METRICS ON RELATIVE CANONICAL BUNDLES
    Tsuji, Hajime
    AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (06) : 1469 - 1501
  • [27] Canonical formulation of self-gravitating spinning-object systems
    Steinhoff, Jan
    Schaefer, Gerhard
    EPL, 2009, 87 (05)
  • [28] The canonical model of a singular curve
    Kleiman, Steven Lawrence
    Martins, Renato Vidal
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 139 - 166
  • [29] CANONICAL CLASSES ON SINGULAR VARIETIES
    FULTON, W
    JOHNSON, K
    MANUSCRIPTA MATHEMATICA, 1980, 32 (3-4) : 381 - 389
  • [30] CANONICAL ANALYSIS OF SINGULAR DATA
    WILSON, WJ
    KSHIRSAGAR, AM
    BIOMETRICS, 1975, 31 (02) : 603 - 604