ON MAXIMUM ABSORPTION THEOREM

被引:7
|
作者
CORNGOLD, N
机构
关键词
D O I
10.13182/NSE66-A16411
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
引用
收藏
页码:410 / &
相关论文
共 50 条
  • [31] Pontryagin maximum principle and Stokes theorem
    Cardin, Franco
    Spiro, Andrea
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 142 : 274 - 286
  • [32] THEOREM OF ALTERNATIVE, KEY-THEOREM, AND VECTOR-MAXIMUM PROBLEM
    LEHMANN, R
    OETTLI, W
    MATHEMATICAL PROGRAMMING, 1975, 8 (03) : 332 - 344
  • [33] On the estimation of maximum coefficients of absorption
    Tolman, RC
    PHYSICAL REVIEW, 1925, 26 (04): : 0431 - 0432
  • [34] Quantum analog of the maximum power transfer theorem
    Cortes, Cristian L.
    Sun, Wenbo
    Jacob, Zubin
    OPTICS EXPRESS, 2022, 30 (20) : 35840 - 35853
  • [35] Application of Maximum Entropy Theorem in Channel Estimation
    Zhang, Zhengyu
    Lou, Jinming
    Jin, Mengdi
    Yao, Yuan
    Zhu, Jingguo
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (02) : 361 - 370
  • [36] GENERALIZATION OF A THEOREM ON THE PARAMETRIC MAXIMUM FLOW PROBLEM
    ARAI, T
    UENO, S
    KAJITANI, Y
    DISCRETE APPLIED MATHEMATICS, 1993, 41 (01) : 69 - 74
  • [37] The maximum modulus theorem for the Stokes system in a ball
    Kratz, W
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) : 389 - 403
  • [38] Maximum power transfer theorem: A simplified approach
    Paul, DK
    Gardner, P
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1998, 35 (03) : 271 - 273
  • [39] The maximum modulus theorem for the Stokes system in a ball
    Werner Kratz
    Mathematische Zeitschrift, 1997, 226 : 389 - 403
  • [40] On the maximum entropy theorem for complex random vectors
    Tauböck, G
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 41 - 41