HIGHER-DIMENSIONAL PLATEAU PROBLEM ON A RIEMANNIAN MANIFOLD

被引:6
|
作者
MORREY, CB
机构
关键词
D O I
10.1073/pnas.54.4.1029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:1029 / &
相关论文
共 50 条
  • [31] HIGHER-DIMENSIONAL UNIFICATION
    FREUND, PGO
    PHYSICA D, 1985, 15 (1-2): : 263 - 269
  • [32] On higher-dimensional contrast structure of singularly perturbed Dirichlet problem
    NI MingKang 1
    2 E-Institutes of Shanghai Universities at Shanghai Jiao Tong University
    ScienceChina(Mathematics), 2012, 55 (03) : 495 - 507
  • [33] A HISTORY OF THE FIBONACCI Q-MATRIX AND A HIGHER-DIMENSIONAL PROBLEM
    GOULD, HW
    FIBONACCI QUARTERLY, 1981, 19 (03): : 250 - 257
  • [34] On higher-dimensional contrast structure of singularly perturbed Dirichlet problem
    MingKang Ni
    ZhiMing Wang
    Science China Mathematics, 2012, 55 : 495 - 507
  • [35] On higher-dimensional contrast structure of singularly perturbed Dirichlet problem
    Ni MingKang
    Wang ZhiMing
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (03) : 495 - 507
  • [36] The equivalence problem of curves in a Riemannian manifold
    M. Castrillón López
    V. Fernández Mateos
    J. Muñoz Masqué
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 343 - 367
  • [37] The equivalence problem of curves in a Riemannian manifold
    Castrillon Lopez, M.
    Fernandez Mateos, V.
    Munoz Masque, J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) : 343 - 367
  • [38] PLATEAU PROBLEM IN A LOVENTRIAN MANIFOLD
    BANCEL, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (08): : 403 - 404
  • [39] DIRICHLET PROBLEM OF POISSON EQUATIONS ON A TYPE OF HIGHER-DIMENSIONAL FRACTAL SETS
    Zhu, Le
    Wu, Yipeng
    Chen, Zhilong
    Yao, Kui
    Huang, Shuai
    Wang, Yuan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (03)
  • [40] Energy asymptotics in the Brezis-Nirenberg problem: The higher-dimensional case
    Frank, Rupert L.
    Koenig, Tobias
    Kovarik, Hynek
    MATHEMATICS IN ENGINEERING, 2020, 2 (01): : 119 - 140