A Penalized Linear and Nonlinear Combined Conjugate Gradient Method for the Reconstruction of Fluorescence Molecular Tomography

被引:1
|
作者
Shang, Shang [1 ]
Bai, Jing [1 ]
Song, Xiaolei [1 ]
Wang, Hongkai [1 ]
Lau, Jaclyn [1 ]
机构
[1] Tsinghua Univ, Dept Biomed Engn, Med Engn & Hlth Technol Res Grp, Beijing 100084, Peoples R China
关键词
D O I
10.1155/2007/84724
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT. Copyright (C) 2007 Shang Shang et al.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Nonlinear conjugate gradient method for spectral tomosynthesis
    Landi, G.
    Piccolomini, E. Loli
    Nagy, J.
    INVERSE PROBLEMS, 2019, 35 (09)
  • [32] An Efficient Modification of Nonlinear Conjugate Gradient Method
    Salleh, Zabidin
    Alhawarat, Ahmad
    Mamat, Mustafa
    Rivaie, Mohd
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 167 - 178
  • [33] Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method
    He, Xiaowei
    Liang, Jimin
    Wang, Xiaorui
    Yu, Jingjing
    Qu, Xiaochao
    Wang, Xiaodong
    Hou, Yanbin
    Chen, Duofang
    Liu, Fang
    Tian, Jie
    OPTICS EXPRESS, 2010, 18 (24): : 24825 - 24841
  • [34] Reconstruction of ultrasound tomography for cancer detection using total least squares and the conjugate gradient method
    Yun, Xingzhao
    He, Jiayu
    Carevic, Anita
    Slapnicar, Ivan
    Barlow, Jesse
    Almekkawy, Mohamed
    MEDICAL IMAGING 2018: ULTRASONIC IMAGING AND TOMOGRAPHY, 2018, 10580
  • [35] Generalized conditional gradient method with adaptive regularization parameters for fluorescence molecular tomography
    Chen, Yi
    Du, Mengfei
    Zhang, Jun
    Zhang, Gege
    Su, Linzhi
    Li, Kang
    Zhao, Fengjun
    Yi, HuangJian
    Wang, Lin
    Cao, Xin
    OPTICS EXPRESS, 2023, 31 (11) : 18128 - 18146
  • [36] The conjugate gradient regularization method in Computed Tomography problems
    Piccolomini, EL
    Zama, F
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 102 (01) : 87 - 99
  • [37] Spectral Conjugate Gradient Like Method for Signal Reconstruction
    Ibrahim, Abdulkarim Hassan
    Muangchoo, Kanikar
    Abubakar, Auwal Bala
    Adedokun, Afeez Dewumi
    Mohammad, Hassan
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (04): : 2013 - 2022
  • [38] CONSTRAINED ITERATIVE RECONSTRUCTION BY THE CONJUGATE GRADIENT METHOD.
    Kawata, S.
    Nalcioglu, O.
    IEEE Transactions on Medical Imaging, 1985, MI-4 (02) : 65 - 71
  • [39] CONSTRAINED ITERATIVE RECONSTRUCTION BY THE CONJUGATE-GRADIENT METHOD
    KAWATA, S
    NALCIOGLU, O
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1985, 4 (02) : 65 - 71
  • [40] Efficient image reconstruction for fluorescence molecular tomography via linear regression approximation scheme with dual augmented Lagrangian method
    Bin Wang
    Xu Zhang
    Yuqing Hou
    Xuelei He
    Huangjian Yi
    Xiaowei He
    Multimedia Systems, 2019, 25 : 135 - 145