KMS STATES FOR THE WEYL ALGEBRA

被引:14
|
作者
NARNHOFER, H
THIRRING, W
机构
[1] Institut für Theoretische Physik, Universität Wien, Vienna, A-1090
关键词
Mathematics Subject Classifications (1991): 81-XX; 82-XX;
D O I
10.1007/BF00750681
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the possible automorphism groups for the Weyl algebra over R, resp. T, and classify those for which KMS states, unique or not unique, exist.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 50 条
  • [41] KMS quantum symmetric states
    Dykema, Ken
    Mukherjee, Kunal
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [42] Perturbation Theory of KMS States
    Ejima, S.
    Ogata, Y.
    ANNALES HENRI POINCARE, 2019, 20 (09): : 2971 - 2986
  • [43] KMS states and complex multiplication
    Connes, Alain
    Marcolli, Matilde
    Ramachandran, Niranjan
    SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (3-4): : 325 - 347
  • [44] Modular Structure of the Weyl Algebra
    Longo, Roberto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (01) : 145 - 183
  • [45] KMS states on conformal QFT
    Tanimoto, Yoh
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, 2019, 80 : 211 - 218
  • [46] The Weyl algebra as a fixed ring
    Tikaradze, Akaki
    ADVANCES IN MATHEMATICS, 2019, 345 : 756 - 766
  • [47] The Weyl group of the Cuntz algebra
    Conti, Roberto
    Hong, Jeong Hee
    Szymanski, Wojciech
    ADVANCES IN MATHEMATICS, 2012, 231 (06) : 3147 - 3161
  • [48] On the Weyl algebra for a particle on a sphere
    Bracci, L.
    Picasso, L. E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (01): : 1 - 6
  • [49] Cyclic cohomology of the Weyl algebra
    Willwacher, Thomas
    JOURNAL OF ALGEBRA, 2015, 425 : 277 - 312
  • [50] On the Weyl algebra for a particle on a sphere
    L. Bracci
    L. E. Picasso
    The European Physical Journal Plus, 126