A NOTE ON ORTHOGONAL POLYNOMIALS

被引:0
|
作者
LI, X [1 ]
机构
[1] UNIV CENT FLORIDA,DEPT MATH,ORLANDO,FL 32816
关键词
D O I
10.1216/rmjm/1181072707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:953 / 956
页数:4
相关论文
共 50 条
  • [41] A note on monotonicity of zeros of generalized Hermite-Sobolev-type orthogonal polynomials
    Marcellan, Francisco
    Rafaeli, Fernando R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (11) : 831 - 838
  • [42] POLYNOMIALS ORTHOGONAL IN AREA AND BIBERBACHS POLYNOMIALS
    SUETIN, PK
    DOKLADY AKADEMII NAUK SSSR, 1969, 188 (02): : 294 - &
  • [43] POLYNOMIALS ASSOCIATED WITH A FAMILY OF ORTHOGONAL POLYNOMIALS
    BREZINSKI, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (17): : 1041 - 1044
  • [44] ON ORTHOGONAL POLYNOMIALS RELATED TO THE ULTRASPHERICAL POLYNOMIALS
    SRIVASTAVA, AN
    SINGH, SN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (07): : 870 - 873
  • [45] CLASS OF POLYNOMIALS CONNECTED WITH ORTHOGONAL POLYNOMIALS
    POPOV, BS
    TENSOR, 1972, 26 : 66 - 68
  • [46] Relativistic orthogonal polynomials are Jacobi polynomials
    Ismail, M. E. H.
    Journal of Physics A: Mathematical and General, 29 (12):
  • [47] Relativistic orthogonal polynomials are Jacobi polynomials
    Ismail, MEH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (12): : 3199 - 3202
  • [48] Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh
    Sharapudinov I.I.
    Sharapudinov T.I.
    Russian Mathematics, 2017, 61 (8) : 59 - 70
  • [49] HOW TO GENERATE UNKNOWN ORTHOGONAL POLYNOMIALS OUT OF KNOWN ORTHOGONAL POLYNOMIALS
    FISCHER, B
    GOLUB, GH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) : 99 - 115
  • [50] Szego polynomials: some relations to L-orthogonal and orthogonal polynomials
    Bracciali, CF
    da Silva, AP
    Ranga, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 79 - 88