STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS .2. THE MAPPING APPROACH

被引:230
|
作者
YAMADA, T [1 ]
FUJISAKA, H [1 ]
机构
[1] KAGOSHIMA UNIV,DEPT PHYS,KAGOSHIMA 890,JAPAN
来源
PROGRESS OF THEORETICAL PHYSICS | 1983年 / 70卷 / 05期
关键词
D O I
10.1143/PTP.70.1240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1240 / 1248
页数:9
相关论文
共 50 条
  • [21] Stability of synchronized chaos in coupled dynamical systems
    Rangarajan, G
    Ding, MZ
    PHYSICS LETTERS A, 2002, 296 (4-5) : 204 - 209
  • [22] Master stability functions for synchronized coupled systems
    Pecora, LM
    Carroll, TL
    PHYSICAL REVIEW LETTERS, 1998, 80 (10) : 2109 - 2112
  • [23] Master stability functions for synchronized coupled systems
    Pecora, LM
    Carroll, TL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (12): : 2315 - 2320
  • [24] ENERGY EFFICIENCY AND STABILITY OF A NONLINEAR COUPLED-OSCILLATOR MODEL OF HOPPING WITH ELASTICALLY-SUSPENDED LOADS
    Ackerman, Jeffrey
    Seipel, Justin
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 1, PTS A AND B, 2012, : 271 - 280
  • [25] General stability analysis of synchronized dynamics in coupled systems
    Chen, YH
    Rangarajan, G
    Ding, MZ
    PHYSICAL REVIEW E, 2003, 67 (02): : 262091 - 262094
  • [26] PHASE LOCKING IN A 2-ELEMENT LASER ARRAY - A TEST OF THE COUPLED-OSCILLATOR MODEL
    XU, JW
    LI, SQ
    LEE, KK
    CHEN, YC
    OPTICS LETTERS, 1993, 18 (07) : 513 - 515
  • [27] The stability boundary of synchronized states in globally coupled dynamical systems
    Glendinning, P
    PHYSICS LETTERS A, 1999, 259 (02) : 129 - 134
  • [28] Connection graph stability method for synchronized coupled chaotic systems
    Belykh, VN
    Belykh, IV
    Hasler, M
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) : 159 - 187
  • [29] COLLECTIVE MOTION IN MANY-PARTICLE SYSTEMS .2. TREATMENT OF COUPLED SYSTEMS
    LIPKIN, HJ
    ANNALS OF PHYSICS, 1961, 12 (03) : 452 - 462
  • [30] VARIATIONAL APPROACH TO A THEORY FOR THE CRITICAL STABILITY OF A FLUID .2.
    ROGERS, FT
    PHYSICAL REVIEW, 1953, 92 (02): : 535 - 535