CHAOTIC INTERFACE DYNAMICS - A MODEL WITH TURBULENT BEHAVIOR

被引:2
|
作者
BOHR, T
GRINSTEIN, G
JAYAPRAKASH, C
JENSEN, MH
MUKAMEL, D
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, YORKTOWN HTS, NY 10598 USA
[2] NORDITA, DK-2100 COPENHAGEN, DENMARK
[3] OHIO STATE UNIV, DEPT PHYS, COLUMBUS, OH 43210 USA
[4] WEIZMANN INST SCI, DEPT PHYS, IL-76100 REHOVOT, ISRAEL
关键词
D O I
10.1103/PhysRevA.46.4791
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the similarities between the dynamics of rough interfaces and fully developed hydrodynamical turbulence. In particular, we introduce a simple system of coupled mappings that (1) is chaotic with an attractor whose dimension grows proportionally to the system size, (2) generates small-scale structure, and (3) has structure functions that grow as power laws. We discuss the universality classes that determine the large-distance long-time behavior by computing the exponents for the scaling of the interface width.
引用
收藏
页码:4791 / 4796
页数:6
相关论文
共 50 条
  • [21] FINGERPRINTS OF CLASSICAL CHAOTIC DYNAMICS IN QUANTUM BEHAVIOR
    Micluta-Campeanu, S.
    Raportaru, M. C.
    Nicolin, A. I.
    Baran, V.
    ROMANIAN REPORTS IN PHYSICS, 2018, 70 (01)
  • [22] A Detailed Look at the SLIP Model Dynamics: Bifurcations, Chaotic Behavior, and Fractal Basins of Attraction
    Zaytsev, Petr
    Cnops, Tom
    Remy, C. David
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (08):
  • [23] Chaotic self-sustaining structure embedded in the turbulent-laminar interface
    Teramura, Toshiki
    Toh, Sadayoshi
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [24] A DUAL-SCALE LES SUBGRID MODEL FOR TURBULENT LIQUID/GAS PHASE INTERFACE DYNAMICS
    Herrmann, Marcus
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [25] CHAOTIC DYNAMICS IN A MODEL OF METAL PASSIVATION
    MCCOY, JK
    PARMANANDA, P
    ROLLINS, RW
    MARKWORTH, AJ
    JOURNAL OF MATERIALS RESEARCH, 1993, 8 (08) : 1858 - 1865
  • [26] MODEL OF THE TRANSISTOR GENERATOR WITH CHAOTIC DYNAMICS
    DMITRIEV, AS
    IVANOV, VP
    LEBEDEV, MN
    RADIOTEKHNIKA I ELEKTRONIKA, 1988, 33 (05): : 1085 - 1088
  • [27] CHAOTIC DYNAMICS AND BIFURCATION IN A MACRO MODEL
    STUTZER, MJ
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1980, 2 (04): : 353 - 376
  • [28] Symbolic dynamics of a chaotic neuron model
    K. Fukuda
    K. Aihara
    K. Aihara
    Artificial Life and Robotics, 2003, 7 (3) : 136 - 144
  • [29] Numerical Analysis of Laminar-Turbulent Transition by Methods of Chaotic Dynamics
    Evstigneev, N. M.
    Magnitskii, N. A.
    DOKLADY MATHEMATICS, 2020, 101 (02) : 110 - 114
  • [30] Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow
    Petrelis, F.
    Fauve, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (49)