SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN

被引:113
作者
BORWEIN, JM [1 ]
BORWEIN, PB [1 ]
GARVAN, FG [1 ]
机构
[1] DALHOUSIE UNIV,DEPT MATH STAT & COMP SCI,HALIFAX B3H 3J5,NS,CANADA
关键词
THETA FUNCTIONS; Q-SERIES; ETA FUNCTION; MODULAR FORMS; CUBIC MODULAR EQUATIONS; HYPERGEOMETRIC FUNCTIONS;
D O I
10.2307/2154520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a beautiful cubic analogue of Jacobi's fundamental theta function identity: theta3(4) = theta4(4) + theta2(4) It is [GRAPHICS] Here omega = exp(2pii/3). In this note we provide an elementary proof of this identity and of a related identity due to Ramanujan. We also indicate how to discover and prove such identities symbolically.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 14 条
[1]  
Andrews G. E., 1976, ENCY MATH APPL, V2
[2]  
Bellman R., 1961, BRIEF INTRO THETA FU
[3]  
Berndt B. C., 1991, RAMANUJANS NOTEBOOKS
[4]  
Borwein J. M., 1987, PI AGM STUDY ANAL NU
[5]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[6]  
BORWEIN JM, 1990, LECTURE NOTES MATH, V1435
[7]  
EWELL JA, 1986, FIBONACCI Q, V24, P151
[8]  
Fine N. J., 1988, MATH SURVEYS MONOGRA, V27
[9]  
KOLBERG O, 1959, NOTE EISENSTEIN SERI
[10]  
KOLITSCH LW, 1990, P C HONOR PT BATEMAN