A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM

被引:176
作者
BORWEIN, JM
BORWEIN, PB
机构
关键词
MEAN ITERATIONS; THETA FUNCTIONS; HYPERGEOMETRIC FUNCTIONS; GENERALIZED ELLIPTIC FUNCTIONS; CUBIC TRANSFORMATIONS; PI; RAMANUJAN;
D O I
10.2307/2001551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce exact cubic analogues of Jacobi's celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The interation in question is a(n+1): = 3/a(n) + 2b(n) and b(n+1): = 3 square-root b(n) (3/a(n)2 + a(n)b(n) + b(n)2). The limit of this iteration is identified in terms of the hypergeometric function 2F1(1/3, 2/3; 1; .), which supports a particularly simple cubic transformation.
引用
收藏
页码:691 / 701
页数:11
相关论文
共 12 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
Bellman R., 1961, BRIEF INTRO THETA FU
[3]  
BERNDT BC, IN PRESS RAMANUJANS
[4]  
BORWEIN J. M., 1988, MORE RAMANUJAN TYPE, P359
[5]  
Borwein J. M., 1987, PI AGM STUDY ANAL NU
[6]  
BORWEIN JM, UNPUB QUADRATIC MEAN
[7]  
CHUDNOVSKY DV, 1988, APPROXIMATIONS COMPL, P375
[8]  
Hardy G. H., 1940, RAMANUJAN
[9]  
Ramanujan S, 1914, Q J MATH, V45, P350
[10]  
TANNERY J, 1972, FONCTIONS ELLIPTIQUE, V2