YANG-MILLS DUALITY IN HIGHER DIMENSIONS

被引:25
|
作者
BAIS, FA
BATENBURG, P
机构
[1] CERN, CH-1211 GENEVA 23, SWITZERLAND
[2] LORENTZ INST THEORET PHYS, 2311 SB LEIDEN, NETHERLANDS
关键词
D O I
10.1016/0550-3213(86)90228-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
引用
收藏
页码:363 / 388
页数:26
相关论文
共 50 条
  • [31] SELF-DUALITY OF SOLUTIONS OF YANG-MILLS EQUATIONS
    GIRARDI, G
    MEYERS, C
    DEROO, M
    PHYSICS LETTERS B, 1978, 73 (4-5) : 468 - 470
  • [32] Higher form Yang-Mills as higher BFYM theories
    Song, Danhua
    Lou, Kai
    Wu, Ke
    Yang, Jie
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (11):
  • [33] HIGHER DERIVATIVE SUPER YANG-MILLS THEORIES
    BERGSHOEFF, E
    RAKOWSKI, M
    SEZGIN, E
    PHYSICS LETTERS B, 1987, 185 (3-4) : 371 - 376
  • [34] Noncommutative supersymmetric Yang-Mills theory in ten dimensions with higher-derivative terms
    Nishino, H
    Rajpoot, S
    PHYSICAL REVIEW D, 2002, 65 (08): : 850051 - 850057
  • [35] INSTABILITY OF HIGHER DIMENSIONAL YANG-MILLS SYSTEMS
    RANDJBARDAEMI, S
    SALAM, A
    STRATHDEE, J
    PHYSICS LETTERS B, 1983, 124 (05) : 345 - 348
  • [36] Global-in-space stability of singularity formation for Yang-Mills fields in higher dimensions
    Glogic, Irfan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 : 140 - 165
  • [37] Finite time blow-up for the Yang-Mills heat flow in higher dimensions
    Grotowski, JF
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (02) : 321 - 333
  • [38] Finite time blow-up for the Yang-Mills heat flow in higher dimensions
    Joseph F. Grotowski
    Mathematische Zeitschrift, 2001, 237 : 321 - 333
  • [39] Supersymmetric Yang-Mills quantum mechanics in various dimensions
    Wosiek, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (19): : 4484 - 4491
  • [40] Is Yang-Mills theory unitary in fractional spacetime dimensions?
    Qingjun Jin
    Ke Ren
    Gang Yang
    Rui Yu
    Science China(Physics,Mechanics & Astronomy), 2024, (07) : 63 - 68