Combining diverse classifiers using precision index functions

被引:2
|
作者
Bird, Jose [1 ]
Ko, Daijin [1 ]
机构
[1] Univ Texas San Antonio, Dept Management & Stat, 1 UTSA Circle, San Antonio, TX 78249 USA
关键词
precision index; PIN; class-specific precision index; PIC; combined classifiers; precision; recall; pattern recognition;
D O I
10.1504/IJAPR.2013.052338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a combining classifier using two proposed precision indexes: precision index (PIN) and class specific precision index (PIC). Comparison of combining methods typically fails to consider high precision performance. This new combining method generates predictions with higher precision and recall than other methods. The proposed method is especially useful for efficient screening of predictions where actual verification is time consuming and costly. The performance of the proposed method is compared to majority voting, stacking, and cluster-selection for two well-known datasets: 1 vowel recognition (Hastie et al., 2009) 2 yeast protein localisation (Frank and Asuncion, 2010). The precisions obtained exceeded results previously reported for protein localisation data (Horton and Nakai, 1997; Chen, 2010) and for vowel recognition data (Hastie et al., 2009). A weighted precision index using PIC and PIN indexes outperformed all combining methods at higher precisions.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 50 条
  • [21] Combining Classifiers for Bioinformatics
    Bonet, Isis
    Rodriguez, Abdel
    Garcia, Maria M.
    Grau, Ricardo
    COMPUTACION Y SISTEMAS, 2012, 16 (02): : 191 - 201
  • [22] Precision approximations for Fermi–Dirac functions of the integer index
    Kalitkin N.N.
    Kolganov S.A.
    Mathematical Models and Computer Simulations, 2016, 8 (6) : 607 - 614
  • [23] COMBINING CLASSIFIERS USING TRAINED FUSER - ANALYTICAL AND EXPERIMENTAL RESULTS
    Wozniak, Michal
    Zmyslony, Marcin
    NEURAL NETWORK WORLD, 2010, 20 (07) : 925 - 934
  • [24] Combining pairwise coupling classifiers using individual logistic regressions
    Yamaguchi, Nobuhiko
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 11 - 20
  • [25] Combining multiple modes of information using unsupervised neural classifiers
    Ahmad, K
    Casey, M
    Vrusias, B
    Saragiotis, P
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDING, 2003, 2709 : 236 - 245
  • [26] Precision Event Coreference Resolution Using Neural Network Classifiers
    Pandian, Arun
    Mulaffer, Lamana
    Oflazer, Kemal
    AlZeyara, Amna
    COMPUTACION Y SISTEMAS, 2020, 24 (01): : 5 - 16
  • [27] Boosting with diverse base classifiers
    Dasgupta, S
    Long, PM
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 273 - 287
  • [28] An Investigation of Combining Gradient Descriptor and Diverse Classifiers to Improve Object Taxonomy in Very Large Image Dataset
    Anusha, T. R.
    Hemavathi, N.
    Mahantesh, K.
    Chetana, R.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 581 - 585
  • [29] Confidence transformation for combining classifiers
    Liu, CL
    Hao, HW
    Sako, H
    PATTERN ANALYSIS AND APPLICATIONS, 2004, 7 (01) : 2 - 17
  • [30] An Algebraic Approach to Combining Classifiers
    Giabbanelli, Philippe J.
    Peters, Joseph G.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 1545 - 1554