Combining diverse classifiers using precision index functions

被引:2
|
作者
Bird, Jose [1 ]
Ko, Daijin [1 ]
机构
[1] Univ Texas San Antonio, Dept Management & Stat, 1 UTSA Circle, San Antonio, TX 78249 USA
关键词
precision index; PIN; class-specific precision index; PIC; combined classifiers; precision; recall; pattern recognition;
D O I
10.1504/IJAPR.2013.052338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a combining classifier using two proposed precision indexes: precision index (PIN) and class specific precision index (PIC). Comparison of combining methods typically fails to consider high precision performance. This new combining method generates predictions with higher precision and recall than other methods. The proposed method is especially useful for efficient screening of predictions where actual verification is time consuming and costly. The performance of the proposed method is compared to majority voting, stacking, and cluster-selection for two well-known datasets: 1 vowel recognition (Hastie et al., 2009) 2 yeast protein localisation (Frank and Asuncion, 2010). The precisions obtained exceeded results previously reported for protein localisation data (Horton and Nakai, 1997; Chen, 2010) and for vowel recognition data (Hastie et al., 2009). A weighted precision index using PIC and PIN indexes outperformed all combining methods at higher precisions.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 50 条
  • [1] Confidence evaluation for combining diverse classifiers
    Hao, HW
    Liu, CL
    Sako, H
    SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 760 - 764
  • [2] Combining Diverse One-Class Classifiers
    Krawczyk, Bartosz
    Wozniak, Michal
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 590 - 601
  • [3] Combining Linear Classifiers Using Probability-Based Potential Functions
    Trajdos, Pawel
    Burduk, Robert
    IEEE ACCESS, 2020, 8 : 207947 - 207961
  • [4] Combining character classifiers using member classifiers assessment
    Sas, J
    Luzyna, M
    5TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, PROCEEDINGS, 2005, : 400 - 405
  • [5] Combination of multiple diverse classifiers using belief functions for handling data with imperfect labels
    Tabassian, Mandi
    Ghaderi, Reza
    Ebrahimpour, Reza
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 1698 - 1707
  • [6] Combining multiple k-nearest neighbor classifiers using different distance functions
    Bao, YG
    Ishii, N
    Du, XY
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 634 - 641
  • [7] Combining classifiers using correspondence analysis
    Merz, CJ
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 591 - 597
  • [8] Using Bayesian network for combining classifiers
    De Stefano, Claudio
    D'Elia, Ciro
    Marcelli, Angelo
    di Freca, Alessandra Scotto
    14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 73 - +
  • [9] Combining diverse neural classifiers for complex problem solving: An ECOC approach
    Ebrahimpour, R.
    Abbasnezhad Arabi, M.
    Babamiri Moghaddam, H.
    World Academy of Science, Engineering and Technology, 2009, 33 : 547 - 551
  • [10] Probability-driven scoring functions in combining linear classifiers
    Trajdos, Pawel
    Burduk, Robert
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 269 - 291