STEIN CONFIDENCE SETS AND THE BOOTSTRAP

被引:0
|
作者
BERAN, R [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
SIGNAL; WHITE NOISE; COVERAGE PROBABILITY; GEOMETRICAL RISK;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Stein estimator ($) over cap xi(s) dominates the sample mean, under quadratic loss, in the N(xi, I) model of dimension q greater than or equal to 3. A Stein confidence set is a sphere of radius ($) over cap d centered at ($) over cap xi(s). The radius ($) over cap d is constructed to make the coverage probability converge to alpha as dimension q increases. This paper studies properties of Stein confidence sets for moderate to large values of 4. Our main results are: Stein confidence sets dominate the classical confidence spheres for xi under a geometrical risk criterion as q --> oo. Correct bootstrap critical values for Stein confidence sets require resampling from a N(($) over cap xi, I) distribution, where \($) over cap xi\ estimates \xi\ well. Simple asymptotic or bootstrap constructions of ($) over cap d result in a coverage probability error of O(q(-1/2)). A more sophisticated bootstrap approach reduces coverage probability error to O(q(-1)). The faster rate of convergence manifests itself numerically for q greater than or equal to 5.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 50 条
  • [21] BOOTSTRAP CONFIDENCE-INTERVALS
    BABU, GJ
    BOSE, A
    STATISTICS & PROBABILITY LETTERS, 1988, 7 (02) : 151 - 160
  • [22] Bootstrap confidence intervals in DirectLiNGAM
    Thamvitayakul, Kittitat
    Shimizu, Shohei
    Ueno, Tsuyoshi
    Washio, Takashi
    Tashiro, Tatsuya
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 659 - 668
  • [23] Bootstrap confidence intervals in DirectLiNGAM
    Institute of Scientific and Industrial Research , Osaka University, Osaka, Japan
    Proc. - IEEE Int. Conf. Data Min. Workshops, ICDMW, (659-668):
  • [24] Bootstrap Confidence Intervals: Comment
    Glesser, L. J.
    1996, (11)
  • [25] Bootstrap confidence intervals - Comment
    Hall, P
    Martin, MA
    STATISTICAL SCIENCE, 1996, 11 (03) : 212 - 228
  • [26] Open sets with Stein hypersurface sections in Stein spaces
    Coltoiu, M
    Diederich, K
    ANNALS OF MATHEMATICS, 1997, 145 (01) : 175 - 182
  • [27] Confidence sets based on the positive part James-Stein estimator with the asymptotically constant coverage probability
    Ahmed, S. Ejaz
    Kareev, Iskander
    Suraphee, Sujitta
    Volodin, Andrei
    Volodin, Igor
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (12) : 2506 - 2513
  • [28] CONFIDENCE SETS CENTERED AT JAMES-STEIN ESTIMATORS - A SURPRISE CONCERNING THE UNKNOWN-VARIANCE CASE
    HWANG, JTG
    ULLAH, A
    JOURNAL OF ECONOMETRICS, 1994, 60 (1-2) : 145 - 156
  • [29] BOOTSTRAP METHODS - A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS - DISCUSSION
    KENT, JT
    DAVISON, AC
    SILVERMAN, BW
    YOUNG, GA
    DANIELS, HE
    TONG, H
    GARTHWAITE, PH
    BUCKLAND, ST
    BERAN, R
    HALL, P
    KOSLOW, S
    STEWART, DW
    TIBSHIRANI, RJ
    TITTERINGTON, DM
    VERRALL, RJ
    WYNN, HP
    WU, CFJ
    HINKLEY, D
    DICICCIO, TJ
    ROMANO, JP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 355 - 370
  • [30] Fixed b subsampling and the block bootstrap: improved confidence sets based on p-value calibration
    Shao, Xiaofeng
    Politis, Dimitris N.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (01) : 161 - 184